A geometric model of twisted differential K-theory

Byungdo Park

CUNY

Algebraic Topology Seminar Princeton University 16th February 2017

Outline

Overview of Differential K-theory

Generalized cohomology theories and spectra Differential cohomology theories Differential K-theory — A geometric model

Twisted *K*-theory

Twisted vector bundles and twisted K-theory Interlude: Differential geometry of U(1)-gerbes Chern-Weil theory of twisted vector bundles

Twisted differential K-theory

Overview

Axioms of Kahle and Valentino

A geometric model of twisted differential K-theory Differential twists and twisted differential K-groups

Appendix

The twisted odd Chern character

Generalized cohomology theories and spectra

Brown Representability

Definition

A generalized cohomology theory is a functor

 $E^{\bullet}: \mathbf{Top}^{\mathsf{op}}_* \to \mathbf{GrAb}$ satisfying:

- Wedge axiom
- Mayer-Vietoris property
- Homotopy invariance

Generalized cohomology theories and spectra Geometric Cocycles

Example (Examples of Geometric cocycles)

- ▶ $H_{\text{sing}}^{\bullet}(-; \mathbb{Z})$: integral cochains
- \triangleright K^0 : complex vector bundles

Let E^{\bullet} be a generalized cohomology theory (such as elliptic cohomologies, TMF, Morava K-theory, \cdots) and X a space.

▶ Question: Can we represent an element of $E^n(X)$ using geometric objects (in X, over X, ...)?

Differential cohomology theories

The idea

On a smooth manifold, there are

- ▶ Topological data spectrum E
- ▶ Differential form data de Rham complex $\Omega^{\bullet} \otimes_{\mathbb{R}} A$

The idea of differential cohomology theory is to combine them in a homotopy theoretic way.

Differential cohomology theories

The Hopkin-Singer Model

Hopkins and Singer (2002): Given any cohomology theory E^{\bullet} and a fixed sequence of cocycles $c=(c_n)$ representing universal characteristic classes, there exists a differential extension \widehat{E}^{\bullet} .

Geometric models of differential K-theory

- Freed-Lott-Klonoff triple model (Klonoff 2008 and Freed-Lott 2009)
 - ▶ Cycle: (E, ∇, ω)
 - ▶ Equivalence relation: $(E, \nabla_E, \omega_E) \sim (F, \nabla_F, \omega_F)$ iff there exists (G, ∇_G) and an isomorphism $\varphi : E \oplus G \to F \oplus G$ such that

$$\operatorname{cs}(t \mapsto (1-t)\nabla_E \oplus \nabla_G + t\varphi^*(\nabla_F \oplus \nabla_G)) \mod \operatorname{Im}(d) = \omega_E - \omega_F$$

▶ Monoid structure: $(\oplus, \oplus, +)$.

We obtain a commutative monoid ${\mathfrak M}$ of isomorphism classes.

$$\widehat{K}^0_{\mathsf{FLK}}(X) := K(\mathfrak{M})$$

Differential K-theory

Hexagon diagram

Twisted differential K-theory hexagon diagram (P. 2016)

Twisted *K*-theory

Twisted vector bundles

Definition (Karoubi, Bouwknegt et al (BCMMS), Waldorf, ...)

- ▶ $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of X
- \triangleright λ : a U(1)-valued completely normalized Čech 2-cocycle.

A λ -twisted vector bundle E over X:

- ▶ A family of product bundles $\{U_i \times \mathbb{C}^n : U_i \in \mathcal{U}\}_{i \in \Lambda}$
- Transition maps

$$g_{ji}:U_{ij}\to U(n)$$

satisfying

$$g_{ii} = 1$$
, $g_{ji} = g_{ij}^{-1}$, $g_{kj}g_{ji} = g_{ki}\lambda_{kji}$.

Twisted *K*-theory

Twisted K-group

Definition (Karoubi, Bouwknegt et al (BCMMS), ...)

The **twisted** K-**theory** of X defined on an open cover $\mathcal U$ with a U(1)-gerbe twisting λ .

$${K}^0({\mathcal U},\lambda):={K}({\tt Iso}({\textbf{Bun}}({\mathcal U},\lambda),\oplus)).$$

Twisted K-theory

Twisted K-group

Definition (Karoubi, Bouwknegt et al (BCMMS), ...)

The **twisted** K-**theory** of X defined on an open cover $\mathcal U$ with a U(1)-gerbe twisting λ .

$${\sf K}^0({\cal U},\lambda):={\sf K}({\sf Iso}({\sf Bun}({\cal U},\lambda),\oplus)).$$

Remark (No twisted vector bundle admits a nontorsion twist)

If λ represents a nontrivial non-torsion class in $H^2(\mathcal{U}, U(1))$, then there does not exist a finite rank λ -twisted vector bundle. (Consider $g_{ik}g_{kj}g_{ji}=\lambda_{kji}\mathbf{1}_n$ and take det.)

Differential geometry of U(1)-gerbes

U(1)-gerbe with connection

Definition

X: a manifold, $\mathcal{U} := \{U_i\}_{i \in \Lambda}$ an open cover of X.

- ▶ A U(1)-gerbe over X on \mathcal{U} : $\{\lambda_{kji}\} \in \check{Z}^2(\mathcal{U}, U(1))$
- ▶ A **connection** on a U(1)-gerbe $\{\lambda_{kji}\}$ on \mathcal{U} is a pair $(\{A_{ji}\}, \{B_i\})$
 - $\{A_{ji} \in \Omega^1(U_{ij}; i\mathbb{R})\}_{i,j\in\Lambda}$
 - $\{B_i \in \Omega^2(U_i; i\mathbb{R})\}_{i \in \Lambda}$

such that the triple $\widehat{\lambda} := (\{\lambda_{kji}\}, \{A_{ji}\}, \{B_i\})$ is a 2-cocycle in Čech-de Rham double complex.

One of the cocycle conditions for $\hat{\lambda}$: $B_j - B_i = dA_{ji}$

Definition

The 3-curvature H of $\widehat{\lambda}$ is defined by $H|_{U_i} := dB_i$.

Chern-Weil theory of twisted vector bundles Connection

Definition

- $\widehat{\lambda} = (\{\lambda_{kji}\}, \{A_{ji}\}, \{B_i\})$
- ▶ $E = (U, \{g_{ji}\}, \{\lambda_{kji}\})$ be a λ -twisted vector bundle

A **connection** on E compatible with $\widehat{\lambda}$ is a family $\Gamma = \{\Gamma_i \in (\Omega^1(U_i; \mathfrak{u}(n)))\}_i$ satisfying that

$$\Gamma_i - g_{ji}^{-1} \Gamma_j g_{ji} - g_{ji}^{-1} dg_{ji} = -A_{ji} \cdot \mathbf{1}.$$

Definition

- $\widehat{\lambda} = (\{\lambda_{kji}\}, \{A_{ji}\}, \{B_i\})$
- $E = (\mathcal{U}, \{g_{ji}\}, \{\lambda_{kji}\})$ be a λ -twisted vector bundle
- ightharpoon Γ a connection on E compatible with $\widehat{\lambda}$

The curvature form of Γ is the family

$$R = \{R_i \in M_n(\Omega^2(U_i; \mathbb{C}))\}_i$$
, where $R_i := d\Gamma_i + \Gamma_i \wedge \Gamma_i$.

Proposition

For each $m \in \mathbb{Z}^+$, the differential forms $\operatorname{tr}[(R_i - B_i \cdot \mathbf{1})^m]$ over the open sets U_i glue together to define a global differential form on X.

Twisted Chern character forms

Definition

- $\widehat{\lambda} = (\{\lambda_{kji}\}, \{A_{ji}\}, \{B_i\})$
- $E = (\mathcal{U}, \{g_{ji}\}, \{\lambda_{kji}\})$ be a λ -twisted vector bundle
- ightharpoonup Γ a connection on E compatible with $\widehat{\lambda}$
- ▶ *H* is the 3-curvature of $\widehat{\lambda}$

The m^{th} twisted Chern character form is defined by

$$ch_{(m)}(\Gamma) := tr(R_i - B_i \cdot \mathbf{1})^m$$
.

The total twisted Chern character form is defined by

$$\mathsf{ch}(\Gamma) := \mathsf{rank}(E) + \sum_{m=1}^{\infty} \frac{1}{m!} \mathsf{ch}_{(m)}(\Gamma).$$

Interlude: Twisted de Rham cohomology

X a smooth manifold, H is a closed 3-form.

▶ The **twisted de Rham complex**. The \mathbb{Z}_2 -graded sequence of differential forms

$$\cdots \to \Omega^{\mathsf{even}}(X) \overset{d+H}{\longrightarrow} \Omega^{\mathsf{odd}}(X) \overset{d+H}{\longrightarrow} \cdots$$

is a complex.

- ▶ The **twisted de Rham cohomology** of X is the cohomology of this complex, and denote it by $H_H^{\bullet}(X)$.
- ▶ If closed 3-forms H and H' are cohomologous, i.e. $H' = H + d\xi$, the multiplication by $\exp(\xi)$ induces an isomorphism $H^{\bullet}_{H}(X) \to H^{\bullet}_{H'}(X)$.

Twisted Chern character forms — Properties

The total twisted Chern character form $ch(\Gamma)$ is

- ▶ (*d* + *H*)-closed
- ► Additive under ⊕
- Natural
- Invariance/covariance under change of twists

Change of twists

- $\widehat{\lambda}_1 \stackrel{\widehat{\alpha}}{\to} \widehat{\lambda}_2 \text{ with } \widehat{\lambda}_2 = \widehat{\lambda}_1 + D\widehat{\alpha}, \text{ where } \widehat{\alpha} = (\{\chi_{ji}\}, \{\Pi_i\}) \in \check{C}^1(\mathcal{U}, \Omega^1)$
- $\widehat{\lambda}_1 = (\{\lambda_{kji}\}, \{A_{ji}\}, \{B_i\}) \xrightarrow{\xi} \widehat{\lambda}_2 = (\{\lambda_{kji}\}, \{A_{ji}\}, \{B_i + \xi_i\}),$ where $\xi \in \Omega^2(X; i\mathbb{R})$ and $\xi_i := \xi|_{U_i}$.

Twisted Chern Simons forms

Definition

- $\widehat{\lambda} = (\{\lambda_{kji}\}, \{A_{ji}\}, \{B_i\})$
- ▶ $E = (U, \{g_{ji}\}, \{\lambda_{kji}\})$ be a λ -twisted vector bundle
- ▶ $\gamma: t \mapsto \Gamma_t$ be a path of connections on E such that each Γ_t is compatible with $\widehat{\lambda}$.
- ▶ $p: X \times I \rightarrow X$ is the projection map
- ightharpoonup $\widetilde{\Gamma}$ is the connection on p^*E defined by $\widetilde{\Gamma}(x,t)=(p^*\Gamma_t)(x,t)$

The **twisted Chern-Simons form** of γ is the integration along the fiber:

$$\operatorname{\mathsf{cs}}(\gamma) := \int_I \operatorname{\mathsf{ch}}(\widetilde{\Gamma}) \in \Omega^{\operatorname{\mathsf{odd}}}(X;\mathbb{C}).$$

Twisted Chern Simons forms

Proposition

ightharpoonup cs(γ) is a transgression form.

$$(d+H)cs(\gamma) = ch(\Gamma_1) - ch(\Gamma_0).$$

ightharpoonup cs(γ) of a loop is in the image of d+H.

Twisted Chern character of a twisted vector bundle

Definition

The **twisted total Chern character** of E, denoted by ch(E), is the twisted cohomology class of $ch(\Gamma)$ for any connection Γ on E.

Proposition

The assignment

$$\mathsf{ch}: \mathcal{K}^0(\mathcal{U},\lambda) \to H^{\mathsf{even}}_H(X;\mathbb{C})$$

$$[E] - [F] \mapsto [\mathsf{ch}(\Gamma^E)] - [\mathsf{ch}(\Gamma^F)],$$

with $(\{A_{ji}\}, \{B_i\})$ a representative connection on λ and Γ^E and Γ^F representative connections on λ -twisted vector bundles E and F, respectively, both compatible with $\widehat{\lambda}$, is a well-defined group homomorphism called the **twisted Chern character**.

Twisted differential *K*-theory History

- '07 Carey, Mickelsson, and Wang
 - Twisted differential K^{-1} -theory.
 - Choices: open cover, spectral cut, partition of unity
- ▶ '09 Kahle and Valentino: Proposed a list of axioms of twisted differential K-theory
- '14 Bunke and Nikolaus
 - Homotopy pullback in $\mathbf{Sp}_{\infty}(\mathbf{Mfld}/M)$
- '16 (Feb) P.
- '16 (Apr) Lott and Gorokhovsky
- '16 (May) Grady and Sati AHSS in differential cohomology
- '17+ Grady and Sati AHSS in twisted differential cohomology

Twisted differential K-theory — Axioms of Kahle and Valentino

Axioms on differential twists

X: a smooth manifold.

Axiom (Kahle and Valentino 2009 Section A.3.)

A **twisted differential even** K-group with a differential twist $\widehat{\lambda} \in \mathfrak{Twist}_{\widehat{K}}(X)$ is a group $\widehat{K}^0(X,\widehat{\lambda})$ satisfying the following axioms:

- ▶ Existence of differential twist. For each $X \in \mathbf{Man}$ there is a groupoid $\mathfrak{Twist}_{\widehat{K}}(X)$ consisting of geometric central extensions.
- ► Forgetful and curvature functors. There exist natural functors:

$$F: \mathfrak{Tmist}_{\widehat{K}}(X) o \mathfrak{Tmist}_{K}(X)$$

Curv: $\mathfrak{Tmist}_{\widehat{K}}(X) o \Omega^3_{\operatorname{cl}}(X;\mathbb{R}).$

Twisted differential K-theory — Axioms of Kahle and Valentino

Axioms on differential twists

▶ A twisted Chern character map. For each $\widehat{\lambda} \in \mathfrak{Twist}_{\widehat{K}}(X)$, there exists a twisted Chern character map

$$\mathsf{ch}_{\widehat{\lambda}}: \mathcal{K}^0(X, F(\widehat{\lambda})) o H^{\mathsf{even}}_{\mathsf{Curv}(\widehat{\lambda})}(X; \mathbb{R})$$

natural with respect to pullback.

Axioms on twisted differential even K-groups

Given any differential twist $\widehat{\lambda} \in \mathfrak{Tmist}_{\mathcal{K}}(X)$, one may associate an abelian group $\widehat{\mathcal{K}}^0(X,\widehat{\lambda})$ satisfying the following properties:

▶ **Functoriality.** For any smooth map $f: X \rightarrow Y$, we have an induced group homomorphism

$$f^*: \widehat{K}^0(Y, \widehat{\lambda}) \to \widehat{K}^0(X, f^*\widehat{\lambda}).$$

Axioms on twisted differential even K-groups

▶ Naturality of twists. For any morphism $\alpha \in \mathsf{Hom}_{\mathfrak{Tmist}_{\widehat{K}}(X)}(\widehat{\lambda}, \widehat{\lambda}')$, there is a natural isomorphism

$$\phi_{\alpha}:\widehat{K}^{0}(X,\widehat{\lambda})\stackrel{\cong}{\to}\widehat{K}^{0}(X,\widehat{\lambda}')$$

which is compatible with the "a" map and the R map.

Axioms on twisted differential even K-groups

 Pull-back square. There are natural transformations (for pullback along smooth maps and along isomorphism of twists)

$$\begin{split} &I: \widehat{K}^0(X,\widehat{\lambda}) \to \widehat{K}^0(X,F(\widehat{\lambda})) \\ &R: \widehat{K}^0(X,\widehat{\lambda}) \to \Omega^{\mathsf{even}}_{\mathsf{Curv}(\widehat{\lambda})}(X;\mathbb{R}) \\ &a: \Omega^{\mathsf{odd}}_{\mathsf{Curv}(\widehat{\lambda})}(X;\mathbb{R})/\mathsf{Im}(\mathsf{ch}) \to \widehat{K}^0(X,\widehat{\lambda}) \end{split}$$

satisfying that

$$R \circ a = d + \mathsf{Curv}(\widehat{\lambda})$$
 and $\mathsf{ch}_{\widehat{\lambda}} \circ I = \mathsf{pr} \circ R$

where $\operatorname{pr}:\Omega^{\operatorname{even}}_{\operatorname{Curv}(\widehat{\lambda})}(X;\mathbb{R})\to H^{\operatorname{even}}_{\operatorname{Curv}(\widehat{\lambda})}(X;\mathbb{R})$ is the canonical map taking de Rham cohomology class.

Axioms on twisted differential even K-groups

Exact sequences. The following natural exact sequence holds:

$$\begin{split} 0 &\to \Omega^{\mathsf{odd}}_{\mathsf{Curv}(\widehat{\lambda})}(X;\mathbb{R})/\mathsf{Im}(\mathsf{ch}) \overset{\mathsf{a}}{\to} \widehat{K}^0(X,\widehat{\lambda}) \overset{\mathsf{I}}{\to} \widehat{K}^0(X,F(\widehat{\lambda})) \to 0 \\ 0 &\to K^0(X,F(\widehat{\lambda});\mathbb{R}/\mathbb{Z}) \to \widehat{K}^0(X,\widehat{\lambda}) \overset{R}{\to} \Omega^{\mathsf{even}}_{\mathsf{Curv}(\widehat{\lambda})}(X;\mathbb{R}) \end{split}$$

Twisted differential K-theory hexagon diagram (P. 2016)

A geometric model of twisted differential *K*-theory

The torsion differential K-twists for an open cover $\mathcal U$ of X, denoted by $\mathsf{Twist}^\mathsf{tor}_{\widehat{\mathcal K}}(\mathcal U)$, is a groupoid such that

- ▶ **objects** $\widehat{\lambda} = (\{\lambda_{kji}\}, \{A_{ji}\}, \{B_i\})$ with $[\lambda] \in \text{Tor}(H^3(X; \mathbb{Z}))$.
- $\begin{array}{l} \blacktriangleright \ \operatorname{\mathsf{Hom}}(\widehat{\lambda}_1,\widehat{\lambda}_2) = \{(\widehat{\alpha},\xi) \in \\ \check{C}^1(\mathcal{U};\Omega^0) \oplus \check{C}^0(\mathcal{U};\Omega^1) \oplus \Omega^2(X;i\mathbb{R})) : \widehat{\lambda}_2 = \widehat{\lambda}_1 + D\widehat{\alpha} + \xi \} \end{array}$

A geometric model of twisted differential K-theory

Twisted differential K-group

- ▶ Cycles: A $\widehat{K}^0(\mathcal{U}; \widehat{\lambda})$ -generator is a triple (E, Γ, ω) consisting of a λ -twisted vector bundle E defined on an open cover $\mathcal{U} = \{U_i\}_{i \in \Lambda}$ on X, a connection Γ on E compatible with $\widehat{\lambda}$, and $\omega \in \Omega^{\text{odd}}(X; \mathbb{C})/\text{Im}(d+H)$.
- **Equivalence relation:** Two $\widehat{K}^0(\mathcal{U}; \widehat{\lambda})$ -generators (E, Γ, ω) and (E', Γ', ω') are **equivalent** if there exists a λ -twisted vector bundle with connection (F, Γ^F) and a λ -twisted vector bundle isomorphism $\varphi = \{\varphi_i\}_{i \in \Lambda} : E \oplus F \to E' \oplus F$ such that $\mathsf{CS}(\Gamma \oplus \Gamma^F, \varphi^*(\Gamma' \oplus \Gamma^F)) = \omega \omega'$.
- ▶ Monoid structure: $(\oplus, \oplus, +)$

The set of isomorphism classes of $\widehat{K}^0(\mathcal{U}; \widehat{\lambda})$ -generators form a commutative monoid.

A geometric model of twisted differential *K*-theory Twisted differential *K*-group

Definition (P. 2016)

- Let $\widehat{\lambda} \in \mathtt{Twist}^{\mathsf{tor}}_{\widehat{K}}(\mathcal{U})$. The **twisted differential** K-group $\widehat{K}^0(\mathcal{U},\widehat{\lambda})$ is the Grothendieck group of the commutative monoid of isomorphism classes of $\widehat{K}^0(\mathcal{U};\widehat{\lambda})$ -generators.
- ▶ The **twisted differential** K-**group** of X, denoted by $\widehat{K}^0(X, \underline{\widehat{\lambda}})$, is defined by the colimit of $\widehat{K}^0(\mathcal{U}, \widehat{\lambda})$ over all refinements of \mathcal{U} .

A geometric model of twisted differential K-theory

Twisted differential K-theory hexagon diagram

Status and Progress

- → '17+ P. Non-torsion case using GL₁-bundle gerbe modules with connection.
- ▶ '17+ P. and Corbett Redden: The odd case.
- ▶ '17+ P. and Corbett Redden: Classification of equivariant gerbe connections

Thank you!

A detailed preprint is available on ArXiv. arXiv:1602.02292 [math.KT].

Appendix

The twisted odd Chern character

The category $\mathcal{P}(\mathcal{U}, \lambda)$

- ▶ Objects: (E, ϕ) where $E \in \mathbf{Bun}(\mathcal{U}, \lambda)$ and $\phi \in \mathsf{Aut}(E)$
- ▶ A morphism $\psi : (E, \phi) \to (E', \phi')$: A λ -twisted vector bundle isomorphism $\psi : E \to E'$ such that

$$E \xrightarrow{\psi} E'$$

$$\downarrow^{\phi} \circlearrowleft \qquad \downarrow^{\phi'}$$

$$E \xrightarrow{\psi} E'$$

Definition

The **twisted** K_1 -**group** $K_1(\mathcal{U}, \lambda)$ is the free abelian group generated by $Isom(\mathcal{P}(\mathcal{U}, \lambda))$ modulo the following relations:

- (1) $(E_1 \oplus E_2, \phi_1 \oplus \phi_2) = (E_1, \phi_1) + (E_2, \phi_2).$
- (2) $(E, \phi_1 \circ \phi_2) = (E, \phi_1) + (E, \phi_2)$.

Appendix

The twisted odd Chern character

Let $\lambda = \{\lambda_{kji}\}$ a torsion U(1)-gerbe on \mathcal{U} .

Definition

The twisted odd Chern character is the map

$$\mathsf{Ch}: \mathcal{K}_1(X,\lambda) \to H^{\mathsf{odd}}_{\mathcal{H}}(X;\mathbb{C})$$
$$(E,\phi) \mapsto \left[\mathsf{cs} \left(t \mapsto (1-t) \Gamma^E + t \phi^* \Gamma^E \right) \right],$$

where Γ^E is a connection on E compatible with $(\{\lambda_{kji}\}, \{A_{ji}\}, \{B_i\})$ for some connection $(\{A_{ji}\}, \{B_i\})$ on the U(1)-gerbe λ that has the 3-curvature H.

Appendix

The twisted odd Chern character

$\mathsf{Ch}(\mathsf{E},\phi)$

- Represents an odd twisted cohomology class.
- Well-defined on the isomorphism classes.
- Independent of choices of connection Γ.
- ▶ Invariant/covariant under the change of connections on $\widehat{\lambda}$.
- ▶ Additive under (\oplus, \oplus)
- ▶ Additive under (1, ∘)
- Functorial