A classification of equivariant gerbe connections

Byungdo Park (KIAS)

joint work with Corbett Redden (LIU Post)

Topology in Australia and South Korea IBS Center for Geometry and Physics 24.04.2018

Outline

Introduction

Differential cohomology

What is a gerbe?

Bundle gerbes with connection

Diximier-Douady class of a bundle gerbe

The 3-curvature of bundle gerbe

G-equivariant bundle gerbes with connection

G-equivariant bundle gerbes with connection

G-equivariant Diximier-Douady classes

Redden's equivariant differential cohomology

Simplicial presheaves and ∞-stacks

Equivariant differential cohomology

Main theorems

Differential Cohomology

Hopkins-Singer Cochain Model

- $\widehat{C}^n(M) = C^n(M; \mathbb{Z}) \times C^{n-1}(M; \mathbb{R}) \times \Omega^n(M; \mathbb{R})$
- $\widehat{d}(c, h, \omega) = (\delta c, c \int \omega \delta h, d\omega)$
- $\widehat{H}^{\bullet}(M) := \operatorname{Ker}(\widehat{d})/\operatorname{Im}(\widehat{d}).$

Differential Cohomology

Hexagon diagram à la Cheeger and Simons

Geometric way to represent elements of $H^2(M; \mathbb{Z})$

M: a smooth manifold.

There are geometric cocycles representing elements of $H^2(M; \mathbb{Z})$.

 (L, ∇) a complex line bundle over M with connection ∇ .

 $c_1(\nabla) := \frac{i}{2\pi} F_{\nabla}$: the first *Chern class* of ∇ .

Chern-Weil theorem says $c_1(\nabla) \in \Omega^2(M; \mathbb{C})$ is a topological invariant of a line bundle L. i.e.

$$c_1(\nabla) - c_1(\nabla') = d\operatorname{cs}(t \mapsto ((1-t)\nabla + t\nabla')).$$

$$c_1(L) \in H^2_{dR}(M;\mathbb{C})$$
 and in fact $c_1(L) \in H^2(M;\mathbb{Z})$

Geometric way to represent elements of $H^2(M; \mathbb{Z})$

M: a smooth manifold.

There are geometric cocycles representing elements of $H^2(M; \mathbb{Z})$.

 (L, ∇) a complex line bundle over M with connection ∇ .

 $c_1(\nabla) := \frac{i}{2\pi} F_{\nabla}$: the first *Chern class* of ∇ .

Chern-Weil theorem says $c_1(\nabla) \in \Omega^2(M; \mathbb{C})$ is a topological invariant of a line bundle L. i.e.

$$c_1(\nabla) - c_1(\nabla') = d\operatorname{cs}(t \mapsto ((1-t)\nabla + t\nabla')).$$

$$c_1(L) \in H^2_{\mathsf{dR}}(M;\mathbb{C})$$
 and in fact $c_1(L) \in H^2(M;\mathbb{Z})$

Question

How do we geometrically represent elements of $H^n(M; \mathbb{Z})$ for n = 3, 4, ...? What is the higher analogue of line bundles?

Geometric way to represent elements of $H^2(M; \mathbb{Z})$

M: a smooth manifold.

There are geometric cocycles representing elements of $H^2(M; \mathbb{Z})$.

 (L, ∇) a complex line bundle over M with connection ∇ .

$$c_1(\nabla) := \frac{i}{2\pi} F_{\nabla}$$
: the first *Chern class* of ∇ .

Chern-Weil theorem says $c_1(\nabla) \in \Omega^2(M; \mathbb{C})$ is a topological invariant of a line bundle L. i.e.

$$c_1(\nabla) - c_1(\nabla') = d\operatorname{cs}(t \mapsto ((1-t)\nabla + t\nabla')).$$

$$c_1(L) \in H^2_{\mathrm{dR}}(M;\mathbb{C})$$
 and in fact $c_1(L) \in H^2(M;\mathbb{Z})$

Question

How do we geometrically represent elements of $H^n(M; \mathbb{Z})$ for n = 3, 4, ...? What is the higher analogue of line bundles?

Answer: (n-2)-gerbes

Hierarchy of (n-2)-gerbes with connection and differential cohomology

$$\begin{array}{c|c}
 & \downarrow & \downarrow & \downarrow \\
\hline
\delta & & \delta & \delta \\
\hline
C^{2}(\mathcal{U}, \underline{S^{1}}) & \xrightarrow{d} C^{2}(\mathcal{U}, \Omega_{M}^{1}) & \xrightarrow{d} C^{2}(\mathcal{U}, \Omega_{M}^{2}) & \xrightarrow{d} \cdots \\
\hline
\delta & & \delta & \delta \\
\hline
C^{1}(\mathcal{U}, \underline{S^{1}}) & \xrightarrow{d} C^{1}(\mathcal{U}, \Omega_{M}^{1}) & \xrightarrow{d} C^{1}(\mathcal{U}, \Omega_{M}^{2}) & \xrightarrow{d} \cdots \\
\hline
\delta & & \delta & \delta \\
\hline
C^{0}(\mathcal{U}, \underline{S^{1}}) & \xrightarrow{d} C^{0}(\mathcal{U}, \Omega_{M}^{1}) & \xrightarrow{d} C^{0}(\mathcal{U}, \Omega_{M}^{2}) & \xrightarrow{d} \cdots \\
\hline
\widehat{H}^{1}(M) \cong C^{\infty}(M, S^{1}) \\
\hline
\widehat{H}^{2}(M) \cong \operatorname{Bun}_{S^{1}, \nabla}(M)_{/\cong} \\
\hline
\widehat{H}^{3}(M) \cong \operatorname{Grb}_{\nabla}(M)_{/\cong}
\end{array}$$

Example: An obstruction for lifting a principal bundle

 $1 o A o \widetilde{G} o G o 1$ a central extension of G.

Question

Let $P \to M$ be a principal G-bundle. What is the necessary and sufficient condition for lifting a principal G-bundle P to a principal \widetilde{G} -bundle \widetilde{P} ?

Example: An obstruction for lifting a principal bundle

 $1 o A o \widetilde{G} o G o 1$ a central extension of G.

Question

Let $P \to M$ be a principal G-bundle. What is the necessary and sufficient condition for lifting a principal G-bundle P to a principal \widetilde{G} -bundle \widetilde{P} ?

Answer: Choose a good cover $\mathcal{U} = \{U_i\}$ of M. The transition maps $g_{ij}: U_{ij} \to G$ are lifted to $\widetilde{g}_{ij}: U_{ij} \to \widetilde{G}$. Define $\lambda_{ijk} := \widetilde{g}_{ij}\widetilde{g}_{jk}\widetilde{g}_{ki}$. So P lifts to \widetilde{P} if and only if

- λ_{ijk} represents $1 \in \check{H}^2(\mathcal{U}, A)$.
- The gerbe with cocycle λ is trivializable.

S^1 -bundle gerbes with connection

Definition, characteristic class

Definition (Murray '94)

Let $M \in \mathbf{Man}$. An object $\mathcal{L} = (L, \mu, \pi) \in \mathsf{Grb}(M)$ consists of the following:

- A surjective submersion $Y \xrightarrow{\pi} M$.
- $L \in \text{Bun}_{S^1}(Y^{[2]})$. (Here $Y^{[2]} = Y \times_M Y$.)
- Isomorphism $\mu \colon \pi_{12}^*L \otimes \pi_{23}^*L \to \pi_{13}^*L$ in $\operatorname{Bun}_{S^1}(Y^{[3]})$ that is associative over $Y^{[4]}$.

S^1 -bundle gerbes with connection

Definition, characteristic class

Definition (Murray '94)

Let $M \in \mathbf{Man}$. An object $\mathcal{L} = (L, \mu, \pi) \in \mathsf{Grb}(M)$ consists of the following:

- A surjective submersion $Y \xrightarrow{\pi} M$.
- $L \in \text{Bun}_{S^1}(Y^{[2]})$. (Here $Y^{[2]} = Y \times_M Y$.)
- Isomorphism $\mu \colon \pi_{12}^*L \otimes \pi_{23}^*L \to \pi_{13}^*L$ in $\operatorname{Bun}_{S^1}(Y^{[3]})$ that is associative over $Y^{[4]}$.

After choosing an open cover $\mathcal{U}=\{U_i\}$, the isomorphism μ determines a degree 2 Čech cochain $g_{ijk}:U_{ijk}\to S^1$. The associativity of μ is the condition for g being a cocycle. Hence we obtain a class in $H^3(M;\mathbb{Z})$ which is called the **Diximier-Douady class** of \mathcal{L}

S^1 -bundle gerbes with connection Definition

Definition (Murray '94)

Let $M \in \mathbf{Man}$. An object $\widehat{\mathcal{L}} = (L, \mu, \pi, \nabla, B) \in \mathsf{Grb}_{\nabla}(M)$ consists of the following:

- A surjective submersion $Y \xrightarrow{\pi} M$.
- $(L, \nabla) \in \operatorname{Bun}_{S^1, \nabla}(Y^{[2]})$. (Here $Y^{[2]} = Y \times_M Y$.)
- Isomorphism $\mu \colon \pi_{12}^*(L,\nabla) \otimes \pi_{23}^*(L,\nabla) \to \pi_{13}^*(L,\nabla)$ in $\operatorname{\mathsf{Bun}}_{S^1,\nabla}(Y^{[3]})$ that is associative over $Y^{[4]}$.
- $B \in \Omega^2(Y)$ satisfying $F_{\nabla} = \pi_2^* B \pi_1^* B =: \delta B \in \Omega^2(Y^{[2]})$.

S^1 -bundle gerbes with connection

The 3-curvature

• Since $0 = dF_{\nabla} = d\delta B = \delta dB$ and the sequence

$$0 \to \Omega^3(\textit{M}) \overset{\pi^*}{\to} \Omega^3(\textit{Y}) \overset{\delta}{\to} \Omega^3(\textit{Y}^{[2]}) \overset{\delta}{\to} \cdots$$

is an acyclic complex, there exists a unique $H \in \Omega^3_{\operatorname{closed}}(M)$ such that $\pi^*H = dB$. This closed 3-form is called the 3-curvature of bundle gerbe.

• The de Rham cohomology class $[H/2\pi i] \in H^3_{dR}(M;\mathbb{R})$ is in fact an integral cohomology class equal to the Diximier-Douady class of $\mathcal{L} = (L, \mu, \pi)$.

Interlude: Equivariant cohomology and Cartan model of *G*-equivariant de Rham complex

From now on, G denotes a compact Lie group acting on a smooth manifold M.

Definition (Borel equivariant cohomology)

Let A be any abelian group. $H_G^{\bullet}(M; A) := H^{\bullet}(EG \times_G M; A)$.

Definition (Cartan model)

The G-equivariant de Rham complex is a complex $(\Omega_G^{\bullet}, d_G)$ where

$$\Omega_G^k(M) := \bigoplus_{k=2i+j} \left(S^i \mathfrak{g}^* \otimes \Omega^j(M) \right)$$

and

$$d_G(\alpha)(X) = d(\alpha(X)) - i_{\widetilde{X}}\alpha(X), \quad X \in \mathfrak{g}$$

where $\widetilde{X}_x := \frac{d}{dt}\Big|_{t=0} e^{-tX} \cdot x$ for all $x \in M$

G-equivariant S^1 -bundle gerbes with connection Definition

Definition (Stienon '10, Meinrenken '03)

An object $\widehat{\mathcal{L}} = (L, \mu, \pi, \nabla, B) \in G\text{-}\mathsf{Grb}_{\nabla}(M)$ consists of the following:

- A *G*-equivariant surjective submersion $Y \xrightarrow{\pi} M$.
- $(L, \nabla) \in G\text{-Bun}_{S^1, \nabla}(Y^{[2]})$ (Here $Y^{[2]} = Y \times_M Y$.)
- Isomorphism $\mu \colon \pi_{12}^*(L,\nabla) \otimes \pi_{23}^*(L,\nabla) \to \pi_{13}^*(L,\nabla)$ in $G\operatorname{-Bun}_{S^1,\nabla}(Y^{[3]})$ that is associative over $Y^{[4]}$.
- $B \in \Omega^2_G(Y)$ satisfying $F_G(\nabla) = \pi_2^* B \pi_1^* B \in \Omega^2_G(Y^{[2]})$.

Definition (P.-Redden, Waldorf)

For $\widehat{\mathcal{L}}_i = (L_i, \nabla_i, \mu_i, \pi_i, B_i) \in G\text{-}\mathsf{Grb}_{\nabla}(M)$, an isomorphism $\widehat{\mathcal{L}}_1 \xrightarrow{\widehat{\mathcal{K}}} \widehat{\mathcal{L}}_2$ is a quadruple $(\zeta, K, \nabla_K, \alpha)$ consists of the following.

- a *G*-equivariant surjective submersion $\zeta \colon Z \to Y_1 \times_M Y_2$
- $(K, \nabla_K) \in G$ -Bun_{S^1, ∇}(Z) such that $F_G(\nabla_K) = \zeta^*(B_2 B_1) \in \Omega^2_G(Z)$.
- Isomorphism $\alpha : (L_1, \nabla_1) \otimes \zeta_2^*(K, \nabla_K) \to \zeta_1^*(K, \nabla_K) \otimes (L_2, \nabla_2)$ of G-equivariant S^1 -bundles with connection over $Z \times_M Z$ compatible with μ_1 and μ_2 .

1-morphisms

1-morphism vs. stable isomorphism

Remark

- (1) When G = 1 and $\zeta = 1$, we recover the stable isomorphism of Murray and Stevenson (2000).
- (2) When G=1, $G ext{-Bun}_{S^1,\nabla}(Z)$ is replaced by $\operatorname{Bun}(Z)$, we recover the 1-morphism of Waldorf (2007).

Proposition (Waldorf, 2007)

There is an equivalence of groupoids between the 1-groupoid of 1-morphisms of Grb(M) and the 1-groupoid of stable isomorphisms of $Grb_{st}(M)$.

Proposition (P.-Redden, 2017)

The above theorem of Waldorf holds for 1-morphisms between G-equivariant gerbes.

2-morphisms

Definition

Definition (P.-Redden, Waldorf)

A transformation $\widehat{\mathcal{J}}\colon\widehat{\mathcal{K}}_1\Rightarrow\widehat{\mathcal{K}}_2$, which is a morphism in the groupoid $G\text{-}\mathsf{Grb}_\nabla(\widehat{\mathcal{L}}_1,\widehat{\mathcal{L}}_2)$ and a 2-morphism in $G\text{-}\mathsf{Grb}_\nabla(M)$, is an equivalence class of triples (W,ω,β_W) consists of the following:

- (1) G-equivariant surjective submersion $\omega:W\to Z_1\times_{Y_1\times_MY_2}Z_2$
- (2) Isomorphism $\beta_W : (K_1, \nabla_1) \to (K_2, \nabla_2)$ over W compatible with α_1 and α_2 .

$$L_{1} \otimes \omega_{2}^{*}K_{1} \xrightarrow{\alpha_{1}} \omega_{1}^{*}K_{1} \otimes L_{2}$$

$$\downarrow^{\mathbf{1} \otimes \omega_{2}^{*}\beta_{W}} \qquad \qquad \downarrow^{\omega_{1}^{*}\beta_{W} \otimes \mathbf{1}}$$

$$L_{1} \otimes \omega_{2}^{*}K_{2} \xrightarrow{\alpha_{2}} \omega_{1}^{*}K_{2} \otimes L_{2}$$

2-morphisms

Definition

Definition

 $(W,\omega,\beta_W)\sim (W',\omega',\beta_{W'})$ if there is a G-manifold X with G-equivariant surjective submersions to W and W' such that the following diagram commutes

and β_W and $\beta_{W'}$ coincides if pulled back to X.

G-equivariant Diximier-Douady Class Definition

Definition (Stiénon '10, Meinrenken '03)

Let $\widehat{\mathcal{L}} = (L, \mu, \pi, \nabla, B) \in G\text{-}\mathsf{Grb}_{\nabla}(M)$. The **equivariant** 3-curvature of $\widehat{\mathcal{L}}$ is the equivariant 3-form $H_G \in \Omega^3_G(M)$ such that $\pi^*H_G = d_GB$.

Proposition (Stiénon '10)

- (1) Equivariant connection ∇ and curving B always exists.
- (2) The class $[H_G] \in H_G^3(M)$ is independent of the choice of connection ∇ and curving B.

The class $[H_G]$ is called **equivariant Diximier-Douady class** of $\widehat{\mathcal{L}}$ due to Stiénon and Meinrenken.

Consequences of Stiénon, Xu, Behrend, and Tu's work

Remark

- (1) The main result of Stiénon (2010) is a comparison between the Stiénon-Meinrenken equivariant Diximier-Douady class with Behrend-Xu equivariant Diximier-Douady class.
- (2) Consequence:

$$0 o G\operatorname{\mathsf{-Grb}}(M)_{/_\cong} o H^3_G(M;\mathbb{Z}) o 0.$$

(3) Surjectivity and \mathbb{Z} coefficients are due to Tu and Xu (2015).

Consequences of Stiénon, Xu, Behrend, and Tu's work

Remark

- (1) The main result of Stiénon (2010) is a comparison between the Stiénon-Meinrenken equivariant Diximier-Douady class with Behrend-Xu equivariant Diximier-Douady class.
- (2) Consequence:

$$0 o G\operatorname{\mathsf{-Grb}}(M)_{/_{\cong}} o H^3_G(M;\mathbb{Z}) o 0.$$

(3) Surjectivity and \mathbb{Z} coefficients are due to Tu and Xu (2015).

Question

How about (2) above "with connection"?

Notations

$$\mathsf{Set} \hookrightarrow \mathsf{Gpd} \hookrightarrow \mathsf{2}\text{-}\mathsf{Gpd} \hookrightarrow \infty\text{-}\mathsf{Gpd}$$

Let \mathcal{C} be an ∞ -Gpd.

Definition

Let $Y \to M$ be a cover. The **Čech nerve** $Y^{\bullet} \in \operatorname{Fun}(\Delta^{\operatorname{op}}, \mathcal{C})$ is a simplicial object in \mathcal{C}

$$Y^{\bullet}: \Delta^{\mathrm{op}} \to \mathcal{C}$$

$$[n] \mapsto Y^{\bullet}([n]) = Y^{[n]} = \underbrace{Y \times_{M \dots \times_{M}} Y}_{n}$$

with obvious face and degeneracy maps from pullback squares and diagonal inclusions, respectively. i.e.

$$Y^{\bullet} := \dots Y \times_M Y \times_M Y \stackrel{\longrightarrow}{\longleftrightarrow} Y \times_M Y \stackrel{\longrightarrow}{\longleftrightarrow} Y.$$

Prestacks and stacks

Definition

A **prestack** of $\mathcal C$ on the site of manifold **Man** is a functor $\mathcal F: \mathbf{Man^{op}} \to \mathcal C.$

Definition

A **stack** \mathcal{F} is a prestack that satisfies the descent condition; i.e. for any cover $Y \to M$,

$$\mathcal{F}(M) \stackrel{\cong}{\to} \mathsf{holim}_{\Delta} \mathcal{F}(Y^{\bullet}).$$

Remark

- If C is Set, then the descent condition is the usual sheaf condition.
- If $\mathcal C$ is \mathbf{Gpd} , then the descent condition is the usual stack condition.

Examples of stacks

Notation

 Shv_∞ the totality of stacks valued in $\mathcal{C} = \mathsf{Grpd}_\infty$

Example

- $M \in \mathsf{Shv}_{\infty}$: $M(X) := C^{\infty}(X, M) \in \mathsf{Set}$
- $\Omega^k \in \mathsf{Shv}_{\infty}$: $\Omega^k(X) \in \mathsf{Set}$
- $\mathcal{B}G \in \mathsf{Shv}_{\infty}$: $\mathcal{B}G(X) := \mathsf{Bun}_G(X) \in \mathsf{Grpd}$
- $\bullet \ \mathcal{B}_\nabla G \in \mathbf{Shv}_\infty \colon \, \mathcal{B}_\nabla G(X) := \mathbf{Bun}_{\nabla,G}(X) \in \mathbf{Grpd}$
- $\mathcal{B}^2_{\nabla}S^1 \in \mathsf{Shv}_{\infty}$:

$$\mathcal{B}^2_{
abla}S^1(X):=L(\Gamma(S^1\stackrel{d\log}{\longrightarrow}\Omega^1 o\Omega^2))(X)\in\mathbf{Grpd}_{\infty}$$

• $\mathcal{B}^{p+1}_{\nabla}S^1\in\mathsf{Shv}_{\infty}$:

$$\mathcal{B}^{p+1}_{
abla}S^1(X):=L(\Gamma(S^1\stackrel{d\log}{\longrightarrow}\Omega^1 o\Omega^2 o\cdots o\Omega^{p+1}))(X)\in \mathbf{Grpd}_{\infty}$$

Example: Differential Quotient Stack

$$egin{aligned} \mathcal{E}_
abla G imes_G M : \mathsf{Man}^\mathsf{op} & o \mathsf{Grpd} \ X \mapsto \mathcal{E}_
abla G imes_G M(X) \in \mathsf{Grpd} \end{aligned}$$

• Objects:

$$X \leftarrow (P, \Theta) \stackrel{f}{\rightarrow} M$$
 where $(P, \Theta) \in \mathbf{Bun}_{G, \nabla}(X)$, $M \in G$ -Man, and $f \in G$ -Man (P, M) .

• Morphisms:

where $F^*\Theta_2 = \Theta_1^*$ and $f_2 \circ F = f_1$.

Definition

- (1) A stack $\mathcal{F} \in \mathbf{Shv}_{\infty}$ is called **homotopy invariant** if $\mathcal{F}(M \times I) \cong \mathcal{F}(M)$.
- (2) A **homotopification** \mathcal{H} is a left-adjoint of inclusion.

$$\mathsf{Shv}_{\infty} \xrightarrow{\stackrel{\mathcal{H}}{\longleftarrow}} \mathsf{Shv}_{\infty}^h$$

(3) For any $Y \in \mathbf{Top}$, $\mathrm{Sing}_{\bullet}(Y) \in \mathbf{Shv}_{\infty}$ defined by $\mathrm{Sing}_{\bullet}(Y)(X) := \mathrm{Sing}_{\bullet}\mathbf{Top}(X,Y)$.

Notation

$$h: \mathbf{Shv}_{\infty} \xrightarrow{\mathcal{H}} \mathbf{Shv}_{\infty}^{h} \xrightarrow{|ev(pt)|} \mathbf{Top}: \mathsf{Sing}_{\bullet}$$

Gerbe connections as simplicial sheaves

Definition

 $\mathcal{K}(A, n) \in \mathbf{Shv}_{\infty}$ is a simplicial sheaf homotopy equivalent to $\mathrm{Sing}_{\bullet}(\mathcal{K}(A, n))$ for $A \in \mathbf{Ab}$.

Proposition

The pullback object $\widehat{\mathcal{K}}(\mathbb{Z},n)\in\mathsf{Shv}_\infty$ in the diagram

$$\widehat{\mathcal{K}}(\mathbb{Z}, n) \longrightarrow \Omega^n_{\text{closed}} \\
\downarrow \qquad \qquad \downarrow \\
\mathcal{K}(\mathbb{Z}, n) \longrightarrow \mathcal{K}(\mathbb{R}, n)$$

is equivalent to (n-2)-Grb $_{\nabla}$ in **Shv** $_{\infty}$.

How do we study equivariant theories?

Non-equivariant case

Let $M \in \mathbf{Man}$ and $\mathcal{F} \in \mathbf{Shv}_{\infty}$.

$$\varphi \in \mathcal{F}(M) \qquad \longleftrightarrow \qquad M \stackrel{\varphi}{\to} \mathcal{F} \quad \in \mathsf{Shv}_{\infty}(M,\mathcal{F})$$

Equivariant case

Let $M \in G$ -Man and $\mathcal{E}_M, \mathcal{F} \in \mathsf{Shv}_\infty$.

$$\psi \in \mathcal{F}_{G}(M) \qquad \longleftrightarrow \qquad \mathcal{E}_{M} \stackrel{\psi}{ o} \mathcal{F} \quad \in \mathsf{Shv}_{\infty}(\mathcal{E}_{M}, \mathcal{F})$$

How do we study equivariant theories? Examples

Example

Example
$$(1) \ H_G^n(M;A) \ \stackrel{\text{``=''}}{\longleftrightarrow} \ H^n(\mathcal{E}_{\nabla}G \times_G M;A)$$
Fact (Redden, 2016): $EG \times_G M \cong h(\mathcal{E}G \times_G M) \cong h(\mathcal{E}_{\nabla}G \times_G M)$

$$H^n(\mathcal{E}_{\nabla}G \times_G M;A) := ho\mathbf{Shv}_{\infty}(\mathcal{E}_{\nabla}G \times_G M, Sing_{\bullet}(K(A,n)))$$

$$\cong ho\mathbf{Top}(h(\mathcal{E}_{\nabla}G \times_G M), K(A,n))$$

$$\cong \pi_0\mathbf{Top}(EG \times_G M, K(A,n)) =: H_G^n(M)$$

How do we study equivariant theories?

Examples

Example (Freed-Hopkins, 2013)

(2)

$$\Omega^n_G(M) \quad \stackrel{\cong}{\longleftrightarrow} \quad \Omega^n(\mathcal{E}_{\nabla}G \times_G M).$$

The map is given by the Weil homomorphism. Given $\alpha \wedge \beta \wedge \gamma \in \Omega_G(M) = (S\mathfrak{g}^* \otimes \Lambda \mathfrak{g}^* \otimes \Omega(M))_{\text{basic}}$ with $|S^1\mathfrak{g}^*| = 2$ and $|\Lambda^1\mathfrak{g}^*| = 1$,

$$(P,\Theta) \xrightarrow{f} M$$

$$\downarrow$$

$$X$$

$$\Omega_{G}(M) \xrightarrow{f^{*}} \Omega_{G}(P) \xrightarrow{\Theta^{*}} \Omega(P)_{\text{basic}} \cong \Omega(X)$$

$$\alpha \wedge \beta \wedge \gamma \mapsto f^{*}(\alpha \wedge \beta \wedge \gamma) \mapsto f^{*}\alpha(F_{\Theta}) \wedge f^{*}\beta(\Theta) \wedge f^{*}\gamma$$

$$X \xrightarrow{(P,\Theta,f)} \mathcal{E}_{\nabla}G \times_{G} M \qquad \qquad \Omega(\mathcal{E}_{\nabla}G \times_{G} M) \xrightarrow{(P,\Theta,f)^{*}} \Omega(X)$$

Equivariant Differential Cohomology à la Redden

Definition

$$\widehat{H}^n_G(M) := \widehat{H}^n(\mathcal{E}_\nabla G \times_G M) := \mathsf{ho}\mathbf{Shv}_\infty(\mathcal{E}_\nabla G \times_G M, \widehat{H}^n)$$

In other words, $\widehat{\lambda} \in \widehat{H}^n_G(M)$ is a construction

•

$$X \leftarrow (P,\Theta) \stackrel{f}{\rightarrow} M \sim \sim \widehat{\lambda}(P,\Theta,f) \in \widehat{H}^n(X)$$

If

$$(P_1, \Theta_1) \xrightarrow{\widetilde{\varphi}} (P_2, \Theta_2) \xrightarrow{f} M$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_1 \longrightarrow X_2$$

then
$$\varphi^* \widehat{\lambda}(P_2, \Theta_2, f) = \widehat{\lambda}(P_1, \Theta_1, f \circ \widetilde{\varphi}).$$

Equivariant Differential Cohomology

Hexagon diagram à la Redden

Ordinary Differential Cohomology

Cochain Model

$$\widehat{C}^{n}(M) \longrightarrow \Omega^{n}(M; \mathbb{R})
\downarrow \qquad \qquad \downarrow
C^{n}(M; \mathbb{Z}) \longrightarrow C^{n}(M; \mathbb{R})$$

- $\widehat{C}^n(M) = C^n(M; \mathbb{Z}) \times C^{n-1}(M; \mathbb{R}) \times \Omega^n(M; \mathbb{R})$
- $\widehat{d}(c, h, \omega) = (\delta c, c \int \omega \delta h, d\omega)$
- $\widehat{H}^{\bullet}(M) := \operatorname{Ker}(\widehat{d})/\operatorname{Im}(\widehat{d}).$

Equivariant Differential Cohomology

Cochain Model

$$\widehat{C}_{G}^{n}(M) \longrightarrow \Omega_{G}^{n}(M; \mathbb{R})
\downarrow \qquad \qquad \downarrow
C_{G}^{n}(M; \mathbb{Z}) \longrightarrow C_{G}^{n}(M; \mathbb{R})$$

- $\widehat{C}^n_{\mathbf{G}}(M) = C^n_{\mathbf{G}}(M; \mathbb{Z}) \times C^{n-1}_{\mathbf{G}}(M; \mathbb{R}) \times \Omega^n_{\mathbf{G}}(M; \mathbb{R})$
- $\hat{d}_{G}(c, h, \omega) = (\delta c, c \int \omega \delta h, d_{G}\omega)$
- $\widehat{H}^{\bullet}_{\underline{G}}(M) := \text{cohomology of } (\widehat{C}^{\bullet}_{\underline{G}}(M), \widehat{d}_{\underline{G}}).$

Theorem (Redden, 2016)

The two definitions of $\widehat{H}_{G}^{\bullet}(M)$ are naturally isomorphic:

$$\mathsf{hoShv}_{\infty}(\mathcal{E}_{\nabla}G \times_{G} M, \widehat{H}^{\bullet}) \cong \widehat{H}^{\bullet}_{G}(M).$$

Theorem (P. and Redden)

Let $M \in G$ -Man, with G a compact Lie group.

(1) There is a natural isomorphism of abelian groups

$$G\operatorname{\mathsf{-Grb}}_
abla(M)_{/\cong} \stackrel{\cong}{\longrightarrow} \widehat{H}^3_G(M).$$

(2) Furthermore, Redden's equivariant differential cohomology hexagon diagram is naturally isomorphic to ...

Redden's hexagon diagram in degree 3 with geometric cocycles

Hexagon diagram à la Redden in degree 3

Theorem (P. and Redden)

There exists a natural functor

$$G\operatorname{\mathsf{-Grb}}_
abla(M) \longrightarrow \operatorname{\mathsf{Grb}}_
abla(\mathcal{E}_
abla G imes_G M)$$

which is an equivalence of 2-groupoids.

Thank you!