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Differential Cohomology
Hopkins-Singer Cochain Model

C"(M) —— Q"(M;R)
C"(M;Z) —= C"(M;R)
(M) = C"(M;Z) x C""Y(M;R) x Q"(M;R)
(c,h,w) = (dc,c — [w — 6h, dw)
*(M) := Ker(d)/Im(d).
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Differential Cohomology

Hexagon diagram a la Cheeger and Simons
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H™Y(M; R/Z) —2— H"(M; Z,)
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What is a gerbe?

Geometric way to represent elements of H*(M;Z)

M: a smooth manifold.

There are geometric cocycles representing elements of
H2(M; 7).

(L, V) a complex line bundle over M with connection V.
c1(V) := 5= Fyg: the first Chern class of V.

Chern-Weil theorem says c;(V) € Q?(M;C) is a topological
invariant of a line bundle L. i.e.

(V) —a(V') =des(t — ((1 - t)V + tV)).

a(L) € H3x(M; C) and in fact ¢i1(L) € H*(M; Z)
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What is a gerbe?

Geometric way to represent elements of H*(M;Z)

M: a smooth manifold.

There are geometric cocycles representing elements of
H2(M; 7).

(L, V) a complex line bundle over M with connection V.
c1(V) := 5= Fyg: the first Chern class of V.

Chern-Weil theorem says c;(V) € Q?(M;C) is a topological
invariant of a line bundle L. i.e.

(V) —a(V') =des(t — ((1 - t)V + tV)).

a(L) € H3x(M; C) and in fact ¢i1(L) € H*(M; Z)

Question
How do we geometrically represent elements of H"(M;Z) for
n=3,4,...7 What is the higher analogue of line bundles?

Answer: (n — 2)-gerbes



What is a gerbe?

Hierarchy of (n — 2)-gerbes with connection and differential cohomology

§ S 5

U, sY) —= U, k) —L> AU, 3,) L— -

§ F) 5
ClU, Y —4= C U, Ql,) —= C U, 92) L -

é S 5

oW, S —L> O, Qk,) —> COWU, 02,) =— .
H' (M) = C=(M, %)
H*(M) = Bung: (M) =
HP(M) = Grby (M) /=



What is a gerbe?

Example: An obstruction for lifting a principal bundle

13A—G— G — 1 a central extension of G.

Question

Let P — M be a principal G-bundle. What is the necessary and

sufficient condition for lifting a principal G-bundle P to a principal
G-bundle P?



What is a gerbe?

Example: An obstruction for lifting a principal bundle

13A—G— G — 1 a central extension of G.

Question

Let P — M be a principal G-bundle. What is the necessary and
sufficient condition for lifting a principal G-bundle P to a principal
G-bundle P?

Answer: Choose a good cover U = {U;} of M. The transition
maps gjj : Uj — G are lifted to gj; : Uj — G. Define
/\ijk = E,-J-gjkgk,-. So P lifts to P if and only if

e \j represents 1 € H?(U, A).

e The gerbe with cocycle X is trivializable.



S-bundle gerbes with connection

Definition, characteristic class

Definition (Murray '94)

Let M € Man. An object £ = (L, u, ) € Grb(M) consists of the
following;:

e A surjective submersion Y = M.
o L €Bungi(YP). (Here YRl = Y x, YV)

e Isomorphism ji: 7i,L @ mhsL — mi5L in Bungi(YE) that is
associative over Y.



S-bundle gerbes with connection

Definition, characteristic class

Definition (Murray '94)
Let M € Man. An object £ = (L, u, ) € Grb(M) consists of the
following;:
e A surjective submersion Y = M.
o L €Bungi(YP). (Here YRl = Y x, YV)
e Isomorphism ji: 7i,L @ mhsL — mi5L in Bungi(YE) that is
associative over Y.

After choosing an open cover U = {U;}, the isomorphism 1
determines a degree 2 Cech cochain giik - Ujjk — Sl The
associativity of y is the condition for g being a cocycle. Hence we
obtain a class in H3(M; Z) which is called the Diximier-Douady
class of L



S-bundle gerbes with connection

Definition

Definition (Murray '94)

Let M € Man. An object L= (L, p,m,V, B) € Grby(M) consists
of the following:

e A surjective submersion Y = M.
e (L,V) € Bungi (YY) (Here Yl =Y xpy Y)

e Isomorphism p: 7, (L, V) @ m35(L, V) — 73i5(L, V) in
Buns: ¢ (YB) that is associative over Y4,

o B € Q2(Y) satisfying Fy = m3B — niB =: 6B € Q2(Y[).



S-bundle gerbes with connection

The 3-curvature

e Since 0 = dFy = ddéB = 0dB and the sequence

0— Q3(M) S Q3(Y) S 3y S ...
is an acyclic complex, there exists a unique H € Q3___ (M)
such that 7*H = dB. This closed 3-form is called the
3-curvature of bundle gerbe.
e The de Rham cohomology class [H/27i] € H3z(M;R) is in
fact an integral cohomology class equal to the
Diximier-Douady class of £ = (L, u, ).



Interlude: Equivariant cohomology and Cartan model of
G-equivariant de Rham complex

From now on, G denotes a compact Lie group acting on a smooth
manifold M.

Definition (Borel equivariant cohomology)
Let A be any abelian group. Hg(M; A) := H*(EG xg M; A).

Definition (Cartan model)
The G-equivariant de Rham complex is a complex (Q¢, dg) where
QE(M) = P (S'g" @ Y(M))
k=2i+j

and
de(a)(X) = d((X)) —1za(X), Xeg

where X, := %L:O e X . xforallxe M



G-equivariant S'-bundle gerbes with connection

Definition

Definition (Stienon '10, Meinrenken '03)

An object £ = (L, u, 7, V, B) € G-Grby (M) consists of the
following:

e A G-equivariant surjective submersion Y = M.
o (L, V) € G-Bungi y(Y) (Here Yl = ¥ x, Y))

e Isomorphism f: 77,(L, V) ® m35(L, V) = mj5(L, V) in
G—Bun517v(Y[3]) that is associative over Y14,

o B € QL(Y) satisfying Fg(V) = 5B — 1B € Q% (Y1),



1-morphisms

Definition

Definition (P.-Redden, Waldorf)
For £; = (Li, Vi, pi, 7, Bj) € G-Grby(M), an isomorphism
L1 K, Lois a quadruple (¢, K, Vk, a) consists of the following.
e a G-equivariant surjective submersion (: Z — Y1 xXp Y2
e (K,Vk) € G-Bungi ¢(Z) such that
Fo(Vk) = ¢*(B2— B1) € Q5(2).
e Isomorphism

a: (L1,V1) ® G(K,Vk) = (K, Vk) ® (L2, V2) of
G-equivariant S*-bundles with connection over Z x Z
compatible with p1 and uo.



1-morphisms

1-morphism vs. stable isomorphism

Remark

(1) When G =1 and ¢ =1, we recover the stable isomorphism of
Murray and Stevenson (2000).

(2) When G =1, G-Bung: y(Z) is replaced by Bun(Z), we
recover the 1-morphism of Waldorf (2007).

Proposition (Waldorf, 2007)

There is an equivalence of groupoids between the 1-groupoid of
1-morphisms of Grb(M) and the 1-groupoid of stable isomorphisms
of Grbet(M).

Proposition (P.-Redden, 2017)

The above theorem of Waldorf holds for 1-morphisms between
G-equivariant gerbes.



2-morphisms

Definition

Definition (P.-Redden, Waldorf)

A transformation ‘Z: le/\l = 162, which is a morphism in the

groupoid G-Grby (L1, £L2) and a 2-morphism in G-Grby (M), is an

equivalence class of triples (W, w, By) consists of the following:

(1) G-equivariant surjective submersion w: W — Z1 Xy, x,,v, 22

(2) lIsomorphism By : (K1, V1) — (K2, V2) over W compatible
with a1 and ao.

L1 ® wiKy — > wiK; @ Lo
\L1®w§/3’w iwfﬁw@ﬂ

L1 ® wiKo —2> wiKy @ Lo



2-morphisms
Definition

Definition

(W,w,Bw) ~ (W', ', Bw) if there is a G-manifold X with
G-equivariant surjective submersions to W and W’ such that the
following diagram commutes

X w
| |
W/ @ Z]. X Y1><MY2 Z2

and By and By coincides if pulled back to X.



G-equivariant Diximier-Douady Class

Definition

Definition (Stiénon '10, Meinrenken '03)

Let £ = (L, p1,7,V,B) € G-Grby(M). The equivariant
3-curvature of L is the equivariant 3-form Hg € Q3 (M) such that
m™Hg = dgB.

Proposition (Stiénon '10)

(1) Equivariant connection V and curving B always exists.

(2) The class [Hg] € HE(M) is independent of the choice of
connection V and curving B.

The class [H] is called equivariant Diximier-Douady class of C
due to Stiénon and Meinrenken.



G-equivariant Diximier-Douady Class

Consequences of Stiénon, Xu, Behrend, and Tu's work

Remark

(1) The main result of Stiénon (2010) is a comparison between
the Stiénon-Meinrenken equivariant Diximier-Douady class
with Behrend-Xu equivariant Diximier-Douady class.

(2) Consequence:
0 — G-Grb(M) ., — HE(M;Z) — 0.

(3) Surjectivity and Z coefficients are due to Tu and Xu (2015).



G-equivariant Diximier-Douady Class

Consequences of Stiénon, Xu, Behrend, and Tu's work

Remark

(1) The main result of Stiénon (2010) is a comparison between
the Stiénon-Meinrenken equivariant Diximier-Douady class
with Behrend-Xu equivariant Diximier-Douady class.

(2) Consequence:
0 — G-Grb(M) ., — HE(M;Z) — 0.

(3) Surjectivity and Z coefficients are due to Tu and Xu (2015).

Question
How about (2) above “with connection”?



Simplicial presheaves and oo-stacks

Notations

Set — Gpd — 2-Gpd — co-Gpd
Let C be an oco-Gpd.
Definition
Let Y — M be a cover. The Cech nerve Y* € Fun(A°,C) is a
simplicial object in C
Y*:A® = C
[l = Ye([n) = Y = Y xp ... xp ¥

n

with obvious face and degeneracy maps from pullback squares and
diagonal inclusions, respectively. i.e.

N
Y* ::...YXMYXM YEYXM YEY
s



Simplicial presheaves and oo-stacks

Prestacks and stacks
Definition
A prestack of C on the site of manifold Man is a functor
F :Man®® — C.

Definition
A stack F is a prestack that satisfies the descent condition; i.e.
for any cover Y — M,

F(M) S holimaF(Y*).

Remark
e If C is Set, then the descent condition is the usual sheaf
condition.
e If C is Gpd, then the descent condition is the usual stack
condition.



Simplicial presheaves and oo-stacks
Examples of stacks

Notation

Shv, the totality of stacks valued in C = Grpd_

Example

o M e Shv,: M(X) = C®(X, M) € Set

QF € Shv,,: QK(X) € Set

BG € Shv,.: BG(X) := Bung(X) € Grpd
By G € Shvy: ByG(X) := Buny ¢(X) € Grpd
B2V51 € Shv,,:

B2 SY(X) = L(r(S* 2% Q! - 0?))(X) € Grpd,,

B%HSl € Shv.:

BESY(X) = L(T(S* 28 Q! - 02— .- — QP))(X) € Grpd,,



Simplicial presheaves and oo-stacks
Example: Differential Quotient Stack

EyG x¢ M : Man®® — Grpd
X = EyG x¢ M(X) € Grpd
e Objects:
X« (P,0) 5L Mm
where (P, ©) € Bung v(X), M € G-Man, and
f € G-Man(P, M).
e Morphisms:
(P1,01)

/ N\
\

(P2,©2)
where F*©, = ©7 and Lo F = f.



Simplicial presheaves and oo-stacks
Some adjunctions
Definition

(1) A stack F € Shvy, is called homotopy invariant if
F(M x 1) = F(M).

(2) A homotopification # is a left-adjoint of inclusion.
H
Shvoofn—_ciShvgo

(3) For any Y € Top, Sing,(Y) € Shv,, defined by
Sing,(Y)(X) := Sing, Top(X, Y).

Notation

h: ShVOOfnﬂ—CTSthoi\%C)'TOP : Sing,



Simplicial presheaves and oo-stacks

Gerbe connections as simplicial sheaves

Definition
K(A, n) € Shvy, is a simplicial sheaf homotopy equivalent to
Sing,(K(A, n)) for A € Ab.

Proposition
The pullback object IE(Z, n) € Shvy, in the diagram

K(z,n) — Q"

closed

L

K(Z,n) — K(R, n)

is equivalent to (n — 2)-Grby in Shv.



How do we study equivariant theories?
Idea

Non-equivariant case
Let M € Man and F € Shv,..

@ € F(M) — M % F e Shvy (M, F)

Equivariant case
Let M € G-Man and &y, F € Shv,,.

¥ € Fe(M) —s Eu B F € Shva(En, F)



How do we study equivariant theories?

Examples

Example

(1) HA(M; A) <=5 HY(E.G x¢ M; A)

Fact (Redden, 2016): EG xg M = h(EG x¢ M) = h(EyG xc M)
H"(‘EyG x¢ M; A) :=hoShv(EyG x ¢ M, Sing,(K(A, n)))

=hoTop(h(E:G x¢ M), K(A, n))
=moTop(EG x¢ M, K(A, n)) =: HZ(M)



How do we study equivariant theories?

Examples
Example (Freed-Hopkins, 2013)

(2) i
QLM) = QLG xg M).

The map is given by the Weil homomorphism. Given
aABAYEQe(M)=(Sg" @ Ag* ® QM)),,cc With |Stg*| =2 and
Ag*| =1,

(P,©) L — M

|

X
Q6(M) 5 Q6(P) & Q(P)basic = Q(X)
aNBAy—= F(aNBAY) = Fra(Fo) AN B(O) A f'y

BON EGxeM QEG xe M) L2 a(x)




Equivariant Differential Cohomology

Equivariant Differential Cohomology a la Redden
Definition
HZ(M) := H"(EyG x ¢ M) := hoShv,,(ExG x ¢ M, H")

In other words, \ € ﬁg(M) is a construction
[ ]

X « (P,©) &> M~—=X(P,0,f) € H'(X)
o If N
(Pl,@l)i)(PL@z)f*)M

l l

X1 Xo

~ o~

then @*\(Ps, @y, f) = A(P1,©1, f 0 3).



Equivariant Differential Cohomology

Hexagon diagram a la Redden

AN



Ordinary Differential Cohomology

Cochain Model

C"(M) —— Q"(M;R)

| |

C"(M;Z) —~ C"(M;R)

(M) = C"(M;Z) x C""Y(M;R) x Q"(M;R)

o C
e d(c,hw)=(dc,c— [w—6h,dw)
o H*(M) := Ker(d)/Im(d).



Equivariant Differential Cohomology
Cochain Model

o~

¢(M) ——=Qg(M:R)

| l

C(M;Z) —= C2(M;R)

(M) = CA(M; Z) x CZH(M;R) x QL(M;R)
(c,h,w) = (dc,c — [w—dh,dcw)
. ﬁ&(l\/l) := cohomology of (6&(/\/7), dc).

Theorem (Redden, 2016)

The two definitions of I:I\&(I\/l) are naturally isomorphic:

hoShveo(EvG x ¢ M, H*) = HE(M).



Main Theorems

Theorem (P. and Redden)
Let M € G-Man, with G a compact Lie group.
(1) There is a natural isomorphism of abelian groups

G-Grby (M), — HE(M).

(2) Furthermore, Redden’s equivariant differential cohomology
hexagon diagram is naturally isomorphic to ...



Main Theorems

Redden's hexagon diagram in degree 3 with geometric cocycles



Main Theorems

Hexagon diagram a la Redden in degree 3

0 0
\Hé\(M;R/m > H?;(M;{
VNN

HAMR) o HiM) © HLMR)




Main Theorems

Theorem (P. and Redden)
There exists a natural functor

G—Grbv(M) — Grbv(ZVG XG M)

which is an equivalence of 2-groupoids.



Thank you!
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