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We now understand the ε− δ definition of limit:

lim
x→a

f(x) = L⇔ For every ε > 0 there exists δ > 0 such that 0 < |x− a| < δ implies |f(x)− L| < ε.

(1)
Now we prove that if a limit exists, it must be unique.

Proposition 1. Let f : I → R is a function defined on an interval. Let a ∈ I. For any real
numbers L1 and L2, if limx→a f(x) = L1 and limx→a f(x) = L2 hold, then L1 = L2.

Proof. We want to prove that L1 = L2, and this equivalent to the following: |L1 − L2| < ε for any
ε > 0. Now by our assumption, L1 = limx→a f(x) = L2. That is, for every ε1 > 0 there exists δ1 > 0
such that 0 < |x − a| < δ1 implies |f(x) − L1| < ε1, and simultaneously, for every ε2 > 0 there
exists δ2 > 0 such that 0 < |x− a| < δ2 implies |f(x)− L2| < ε2. Hence if we take δ = min{δ1, δ2},
it follows that |L1 − L2| ≤ |L1 − f(x)|+ |f(x)− L2| < ε1 + ε2 whenever 0 < |x− a| < δ. Note that
we used the triangle inequality |a + b| ≤ |a| + |b|. Since ε1 and ε2 were arbitrary, we may as well
take ε1 = ε2 = ε/2 where ε is arbitrary. Hence we established that |L1 − L2| < ε for an arbitrary
ε > 0.

Exercise. Using the definition (1), prove that any M ∈ [−1, 1] is not equal to limx→0 sin 1
x
.

Exercise. Let f : I → R is a function defined on an interval. Let a ∈ I. Assume f(a) > 0 and
limx→a f(x) = f(a). Explain why we can find an open interval (c, d) ⊂ I containing a such that
f(x) is positive on (c, d).

Exercise. First study thoroughly Example 6 and Example 7 in p.73. (1) Explain that, in cases of
each function given in these examples, the choice of δ is depending only on ε and not on x.
(2) Give an example of a function f : R → R such that limx→a f(x) = f(a) for all a ∈ R, which
has δ depending both on ε and a, in the argument for proving limx→a f(x) = f(a) by using ε − δ
arguments. Explain why your example is satisfying all these requirements.

Comments on Homework 1

Section 1.6 Exercises 59, 61 and 63 asks, by using the fact that each of lnx and ex is the inverse
of the other, to simplify the following: 59. ln ex

2
61. eln(5x+2) 63. eln

√
x. Recall that if g : Y → X

is an inverse function of a function f : X → Y , g ◦ f = 1X and f ◦ g = 1Y . Now let f(x) = ex

and g(x) = ln x. Note that g ◦ f is defined on R, but f ◦ g is defined only on (0,∞). Hence
g ◦ f(x) = ln ex = x for all x ∈ R, and f ◦ g(x) = elnx = x for all x ∈ (0,∞). Now it follows that
59. ln ex

2
= x2 for all x ∈ R; 61. eln(5x+2) = (5x+ 2) for all x > −2/5; 63. eln

√
x =
√
x for all x > 0.
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