Addenda - Lesson 4

MAT175 Section B402

September 6th, 2012

We now understand the $\epsilon-\delta$ definition of limit:
$\lim _{x \rightarrow a} f(x)=L \Leftrightarrow$ For every $\epsilon>0$ there exists $\delta>0$ such that $0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$.
Now we prove that if a limit exists, it must be unique.
Proposition 1. Let $f: I \rightarrow \mathbb{R}$ is a function defined on an interval. Let $a \in I$. For any real numbers L_{1} and L_{2}, if $\lim _{x \rightarrow a} f(x)=L_{1}$ and $\lim _{x \rightarrow a} f(x)=L_{2}$ hold, then $L_{1}=L_{2}$.

Proof. We want to prove that $L_{1}=L_{2}$, and this equivalent to the following: $\left|L_{1}-L_{2}\right|<\epsilon$ for any $\epsilon>0$. Now by our assumption, $L_{1}=\lim _{x \rightarrow a} f(x)=L_{2}$. That is, for every $\epsilon_{1}>0$ there exists $\delta_{1}>0$ such that $0<|x-a|<\delta_{1}$ implies $\left|f(x)-L_{1}\right|<\epsilon_{1}$, and simultaneously, for every $\epsilon_{2}>0$ there exists $\delta_{2}>0$ such that $0<|x-a|<\delta_{2}$ implies $\left|f(x)-L_{2}\right|<\epsilon_{2}$. Hence if we take $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, it follows that $\left|L_{1}-L_{2}\right| \leq\left|L_{1}-f(x)\right|+\left|f(x)-L_{2}\right|<\epsilon_{1}+\epsilon_{2}$ whenever $0<|x-a|<\delta$. Note that we used the triangle inequality $|a+b| \leq|a|+|b|$. Since ϵ_{1} and ϵ_{2} were arbitrary, we may as well take $\epsilon_{1}=\epsilon_{2}=\epsilon / 2$ where ϵ is arbitrary. Hence we established that $\left|L_{1}-L_{2}\right|<\epsilon$ for an arbitrary $\epsilon>0$.

Exercise. Using the definition (1), prove that any $M \in[-1,1]$ is not equal to $\lim _{x \rightarrow 0} \sin \frac{1}{x}$.
Exercise. Let $f: I \rightarrow \mathbb{R}$ is a function defined on an interval. Let $a \in I$. Assume $f(a)>0$ and $\lim _{x \rightarrow a} f(x)=f(a)$. Explain why we can find an open interval $(c, d) \subset I$ containing a such that $f(x)$ is positive on (c, d).

Exercise. First study thoroughly Example 6 and Example 7 in p.73. (1) Explain that, in cases of each function given in these examples, the choice of δ is depending only on ϵ and not on x.
(2) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow a} f(x)=f(a)$ for all $a \in \mathbb{R}$, which has δ depending both on ϵ and a, in the argument for proving $\lim _{x \rightarrow a} f(x)=f(a)$ by using $\epsilon-\delta$ arguments. Explain why your example is satisfying all these requirements.

Comments on Homework 1

Section 1.6 Exercises 59, 61 and 63 asks, by using the fact that each of $\ln x$ and e^{x} is the inverse of the other, to simplify the following: 59. $\ln e^{x^{2}} 61 . e^{\ln (5 x+2)} 63 . e^{\ln \sqrt{x}}$. Recall that if $g: Y \rightarrow X$ is an inverse function of a function $f: X \rightarrow Y, g \circ f=\mathbf{1}_{X}$ and $f \circ g=\mathbf{1}_{Y}$. Now let $f(x)=e^{x}$ and $g(x)=\ln x$. Note that $g \circ f$ is defined on \mathbb{R}, but $f \circ g$ is defined only on $(0, \infty)$. Hence $g \circ f(x)=\ln e^{x}=x$ for all $x \in \mathbb{R}$, and $f \circ g(x)=e^{\ln x}=x$ for all $x \in(0, \infty)$. Now it follows that 59. $\ln e^{x^{2}}=x^{2}$ for all $x \in \mathbb{R} ; 61$. $e^{\ln (5 x+2)}=(5 x+2)$ for all $x>-2 / 5 ; 63$. $e^{\ln \sqrt{x}}=\sqrt{x}$ for all $x>0$.

