MAT 175 Calculus I - Practice Final Exam Problems

- Compute the derivative of each function:
 a) f(x) = e^{sin x}
 - b) $g(t) = t \ln t$
 - c) $h(x) = x^5 3x^4 + \pi x^3 + \sqrt{2}$
 - d) $u(t) = \sqrt{t} + \frac{1}{t}$
 - e) $v(x) = \ln(1 + x^2)$
- 2. By writing down an equation or sketching a graph, give an example of a differentiable function whose derivative is *never* equal to zero.

Then give an example of a differentiable function whose derivative is *always* equal to zero.

- 3. Write down an equation of the tangent line to the graph of the function $F(x) = 1 e^x$ at the point (1, 1 e).
- 4. Write down an equation of the tangent line to the graph of the function $G(x) = x + \ln x$ at the point (e, e+1).
- 5. At which points are the tangent lines to the graph of $y = \frac{1}{3}x^3 \frac{1}{2}x^2 2x + 6$ horizontal?
- 6. Compute the limits:
 - a) $\lim_{x\to 2} x^2 + 3x 1 =$
 - b) $\lim_{x \to 2} \frac{x^2 + 3x 1}{x + 1} =$
 - c) $\lim_{x \to 2} \frac{x^2 4}{x 2} =$
 - d) $\lim_{\theta \to 0} \frac{\sin 2\theta}{3\theta} =$
- 7. For which constant k is the following function R(x) continuous for all x? Justify your answer.

$$R(x) = \begin{cases} \frac{x^2 - 4}{x + 2} & \text{if } x \neq -2\\ k & \text{if } x = -2 \end{cases}$$

8. For which x is the following function S(x) continuous? Justify your answer.

$$S(x) = \begin{cases} x^2 & \text{if } x < 0\\ \cos x & \text{if } 0 \le x \end{cases}$$

9. Differentiate each function:

a) $u(x) = (3x)(\sin x)(e^x)$

b) $v(x) = \cos(\sin(e^x))$

- 10. Find the absolute maximum and minimum values of $f(x) = 3x^4 4x^2$ on the closed interval [-1, 2].
- 11. Find all relative extrema of $F(x) = -3x^5 + 5x^3$.
- 12. Find concavity and inflection points of the graph of $y = x^4 4x^3$.
- 13. Determine the slope of the tangent line to the graph of the equation $x^2 + 4y^2 = 4$ at the point $(\sqrt{2}, -1/\sqrt{2})$. HINT: Use implicit differentiation.
- 14. If G(s) is a differentiable function, circle the correct expression for the slope of the tangent line to the graph of G(s) at the point (0, G(0)):

$$\lim_{\Delta s \to 1} \frac{G(\Delta s) - G(0)}{\Delta s} \qquad \lim_{\Delta s \to 0} \frac{G(1 + \Delta s) - G(1)}{\Delta s} \qquad \lim_{\Delta s \to 0} \frac{G(\Delta s) - G(0)}{\Delta s} \qquad \lim_{\Delta s \to 1} \frac{G(0 + \Delta s) - G(0)}{\Delta s}$$

- 15. If the area $A = \pi r^2$ enclosed by an expanding circle is increasing at the constant rate of 24π square inches per second, how fast is the radius r of the circle increasing when the area is 16π ?
- 16. If the length s of the sides of an expanding cube is increasing at the constant rate of 2 inches per second, how fast is the volume $V = s^3$ of the cube increasing when V = 27?
- 17. Find the limits:
 - a) $\lim_{x\to\infty}\frac{2x+5}{3x^2+1} =$
 - b) $\lim_{x \to \infty} \frac{2x^2 + 5}{3x^2 + 1} =$
 - c) $\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} =$
 - d) $\lim_{x\to\infty} \frac{x+\sqrt{x}}{\sqrt{x+99}} =$
 - e) $\lim_{x\to\infty} \frac{1+\sin x}{e^x} =$
 - f) $\lim_{x \to \infty} \frac{-6x^3 + 2x}{2x^3 + 3x^2} =$
- 18. If the position at time t of an object moving in a straight line is given by $s = \sqrt{t}$, find the velocity and acceleration at t = 4.