Lesson 2: Solution to an exercise

Fall 2013 MAT175 Section C401[19514]

September 5, 2013

Exercise. Show that the slope of a straight line that is perpendicular straightline having its slope m is given by $-\frac{1}{m}$, when m is a nonzero real number.

Proof. Suppose l_{1} and l_{2} be perpendicular straight lines in \mathbb{R}^{2} with slopes m_{1} and m_{2}, respectively. We also assume that $m_{1}>m_{2}$ and m_{1}, m_{2} are nonzero finite numbers. It suffices to prove that each of l_{1} and l_{2} has its y-intercept zero. That is,

$$
l_{1}: \quad y=m_{1} x, \quad l_{2}: \quad y=m_{2} x
$$

Let $P=\left(1, m_{1}\right)$ and $Q=\left(1, m_{2}\right)$. Then $\triangle O Q P$ is a right-angled triangle with $\angle O=90^{\circ}$. Hence by Pytagorean theorem,

$$
\overline{O Q}^{2}+\overline{O P}^{2}=\overline{Q P}^{2}
$$

which is $\left(1^{2}+m_{2}^{2}\right)+\left(1^{2}+m_{1}^{2}\right)=\left(m_{1}-m_{2}\right)^{2}$, and thus it follows that $m_{1} m_{2}=-1$.
Another Proof. Given any straightline l with the slope m, let θ be the angle between x-axis and l where $-90^{\circ}<\theta<90^{\circ}$. Then $m=\tan \theta$, by definition of the slope(and tangent). Any straightline l^{\prime} that is perpendicular to l and the x-axis form an angle $\theta+90^{\circ}$, and the slope m^{\prime} of l^{\prime} is $\tan \left(\theta+90^{\circ}\right)=$ $-\cot \theta$. Hence $m m^{\prime}=-1$.

