Lesson 2: Solution to an exercise

Fall 2013 MAT175 Section C401[19514]

September 5, 2013

Exercise. Show that the slope of a straight line that is perpendicular straightline having its slope m is given by $-\frac{1}{m}$, when m is a nonzero real number.

Proof. Suppose l_1 and l_2 be perpendicular straight lines in \mathbb{R}^2 with slopes m_1 and m_2 , respectively. We also assume that $m_1 > m_2$ and m_1, m_2 are nonzero finite numbers. It suffices to prove that each of l_1 and l_2 has its y-intercept zero. That is,

$$l_1: \quad y = m_1 x, \qquad \qquad l_2: \quad y = m_2 x.$$

Let $P = (1, m_1)$ and $Q = (1, m_2)$. Then $\triangle OQP$ is a right-angled triangle with $\angle O = 90^{\circ}$. Hence by Pytagorean theorem,

$$\overline{OQ}^2 + \overline{OP}^2 = \overline{QP}^2,$$

which is $(1^2 + m_2^2) + (1^2 + m_1^2) = (m_1 - m_2)^2$, and thus it follows that $m_1 m_2 = -1$.

Another Proof. Given any straightline l with the slope m, let θ be the angle between x-axis and l where $-90^{\circ} < \theta < 90^{\circ}$. Then $m = \tan \theta$, by definition of the slope (and tangent). Any straightline l' that is perpendicular to l and the x-axis form an angle θ +90°, and the slope m' of l' is $\tan(\theta+90^{\circ}) = -\cot \theta$. Hence mm' = -1.