## Midterm Exam II

Fall 2013, MAT 175 Section C401[19514]
November 7th, 2013. 11:00AM-12:40PM.
Instructions: Print your name on the exam booklet. This exam is closed-book and closed-note. You cannot use any electronic device in this exam. You are not allowed to talk to other students. Write all details explicitly. Answers without justifications and/or calculation steps may receive no score. Hand-in blue booklet only, and keep the exam paper for your study.
1.(Sample Final I-1) Compute the derivative $\frac{d y}{d x}$ for $y=\sqrt{7}+\frac{1}{x^{3}}+2 \sqrt{x}$.(5 Points)
2.(Sample Final I-1) Compute the derivative $\frac{d y}{d x}$ for $y=e^{2}+\frac{1}{e}+3 e^{x}+2 \ln x$.(5 Points)
3.(Sample Final I-2) Compute the derivative $f^{\prime}(t)$ of the function $f(t)=\frac{x^{2}}{t^{2}}+\frac{t^{2}}{x^{2}}+t x$.(5 Points) Hint: What is the variable? What are constants?
4.(Sample Final I-2) Compute the derivative $p^{\prime}(c)$ of the function $p(c)=\pi c \cos (\pi x)+\frac{x}{c}+c+c e^{x}$. (5 Points) Hint: What is the variable? What are constants?
5.(Sample Final I-3) Write down an equation of the tangent line to the graph of $y=e^{2 x}+2 x$ at the point where $x=0$. ( 5 Points)
6.(Sample Final I-3) Write down an equation of the tangent line to the graph of $y=x+\cos x$ at the point where $x=0$.( 5 Points)
7.(Sample Final I-4) Determine the slope of the tangent line to the graph of the equation $4 x^{2}+9 y^{2}=$ 25 at the point (2,1).(5 Points) Hint: Implicit differentiation
8.(Sample Final I-4) Determine the slope of the tangent line to the graph of the equation $x^{2}-y^{2}=1$ at the point $(\sqrt{2}, 1)$.(5 Points) Hint: Implicit differentiation
9.(Sample Final I-5) Compute the derivative $\frac{d z}{d x}$ of the function $z=x^{3} e^{3 x}$.(5 Points)
10.(Sample Final I-5) Compute the derivative $\frac{d A}{d \theta}$ of the function $A(\theta)=\theta e^{\theta} \cos \theta$.(5 Points)
11.(Sample Final I-6) Compute the derivative $P^{\prime}(l)$ of the function $P(l)=\ln \left(l^{2}+\sin l\right)$.(5 Points)
12.(Sample Final I-6) Compute the derivative $Q^{\prime}(\pi)$ of the function $Q(\pi)=\cos \left(\sin \left(\pi^{2}\right)\right)$, where $\pi$ is a variable and NOT a constant $\pi=3.141592 \ldots$..(5 Points)
13.(Sample Final I-12) If the position of an object dropped from a height of 64 m is given by $h(t)=64-\frac{1}{2} g t^{2}$ after $t$ seconds, where $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the gravitational acceleration, find both the velocity and the acceleration of the object when it hits the ground. Note: It is not required to substitute $g$ into a number. One can leave $g$ in the answer.(5 Points)
14.(Sample Final I-12) If the position of a particle moving in a straight line is given by $x(t)=t^{4}+2 t$ after $t$ seconds, find both the velocity and the acceleration of the particle when $t=1$.( 5 Points)
15.(Sample Final I-10) If the area $A(a)=\frac{\sqrt{3}}{4} a^{2}$ of an equilateral triangle is increasing at the constant rate 3 square inches per second, how fast is the length $a$ of the sides increasing when the area is $4 \sqrt{3}$ square inches? (5 Points)
16.(Sample Final I-10) If the volume $V(a)=\frac{\sqrt{2}}{12} a^{3}$ of an expanding equilateral tetrahedron with the length $a$ of sides is increasing at the constant rate of 120 cubic inches per second, how fast is the length $a$ increasing when the volume is $\frac{2 \sqrt{2}}{3}$ cubic inches?(5 Points)
17. (Sample Final I-15) Show that the derivative of $f(x)=2 x^{2}-1$ is $f^{\prime}(x)=4 x$ by using the definition of the derivative as the limit of a difference quotient.(10 Points)
18. (Sample Final I-15) Show that the derivative of $f(x)=x^{2}+x$ is $f^{\prime}(x)=2 x+1$ by using the definition of the derivative as the limit of a difference quotient.(10 Points)

