Midterm Exam II

Fall 2013, MAT 175 Section C401[19514] November 7th, 2013. 11:00AM-12:40PM.

Instructions: Print your name on the exam booklet. This exam is closed-book and closed-note. You cannot use any electronic device in this exam. You are not allowed to talk to other students. Write all details explicitly. Answers without justifications and/or calculation steps may receive no score. Hand-in blue booklet only, and keep the exam paper for your study.

1.(Sample Final I-1) Compute the derivative $\frac{dy}{dx}$ for $y = \sqrt{7} + \frac{1}{x^3} + 2\sqrt{x}$.(5 Points)

2.(Sample Final I-1) Compute the derivative $\frac{dy}{dx}$ for $y = e^2 + \frac{1}{e} + 3e^x + 2\ln x$.(5 Points)

3.(Sample Final I-2) Compute the derivative f'(t) of the function $f(t) = \frac{x^2}{t^2} + \frac{t^2}{x^2} + tx$.(5 Points) *Hint: What is the variable? What are constants?*

4.(Sample Final I-2) Compute the derivative p'(c) of the function $p(c) = \pi c \cos(\pi x) + \frac{x}{c} + c + ce^x$. (5 Points) *Hint: What is the variable? What are constants?*

5.(Sample Final I-3) Write down an equation of the tangent line to the graph of $y = e^{2x} + 2x$ at the point where x = 0.(5 Points)

6.(Sample Final I-3) Write down an equation of the tangent line to the graph of $y = x + \cos x$ at the point where x = 0.(5 Points)

7.(Sample Final I-4) Determine the slope of the tangent line to the graph of the equation $4x^2 + 9y^2 = 25$ at the point (2, 1).(5 Points) *Hint: Implicit differentiation*

8.(Sample Final I-4) Determine the slope of the tangent line to the graph of the equation $x^2 - y^2 = 1$ at the point ($\sqrt{2}$, 1).(5 Points) *Hint: Implicit differentiation*

9.(Sample Final I-5) Compute the derivative $\frac{dz}{dx}$ of the function $z = x^3 e^{3x}$.(5 Points)

10.(Sample Final I-5) Compute the derivative $\frac{dA}{d\theta}$ of the function $A(\theta) = \theta e^{\theta} \cos \theta$.(5 Points)

11.(Sample Final I-6) Compute the derivative P'(l) of the function $P(l) = \ln(l^2 + \sin l)$.(5 Points)

12.(Sample Final I-6) Compute the derivative $Q'(\pi)$ of the function $Q(\pi) = \cos(\sin(\pi^2))$, where π is a variable and NOT a constant $\pi = 3.141592....(5 \text{ Points})$

13.(Sample Final I-12) If the position of an object dropped from a height of 64m is given by $h(t) = 64 - \frac{1}{2}gt^2$ after t seconds, where $g = 9.8m/s^2$ is the gravitational acceleration, find both the velocity and the acceleration of the object when it hits the ground. Note: It is not required to substitute g into a number. One can leave g in the answer.(5 Points)

14.(Sample Final I-12) If the position of a particle moving in a straight line is given by $x(t) = t^4 + 2t$ after t seconds, find both the velocity and the acceleration of the particle when t = 1.(5 Points)

15.(Sample Final I-10) If the area $A(a) = \frac{\sqrt{3}}{4}a^2$ of an equilateral triangle is increasing at the constant rate 3 square inches per second, how fast is the length *a* of the sides increasing when the area is $4\sqrt{3}$ square inches?(5 Points)

16.(Sample Final I-10) If the volume $V(a) = \frac{\sqrt{2}}{12}a^3$ of an expanding equilateral tetrahedron with the length a of sides is increasing at the constant rate of 120 cubic inches per second, how fast is the length a increasing when the volume is $\frac{2\sqrt{2}}{3}$ cubic inches?(5 Points)

17.(Sample Final I-15) Show that the derivative of $f(x) = 2x^2 - 1$ is f'(x) = 4x by using the definition of the derivative as the limit of a difference quotient.(10 Points)

18.(Sample Final I-15) Show that the derivative of $f(x) = x^2 + x$ is f'(x) = 2x + 1 by using the definition of the derivative as the limit of a difference quotient.(10 Points)