Midtern Exam II Solution.
\#1. $y=\sqrt{n}+\frac{1}{x^{3}}+2 \sqrt{x}$

$$
\begin{aligned}
\frac{d y}{d x} & =0-\frac{3}{x^{4}}+\frac{1}{\sqrt{x}} \\
& =-\frac{3}{x^{4}}+\frac{1}{\sqrt{x}}
\end{aligned}
$$

\#2.

$$
\begin{aligned}
y & =\underbrace{e^{2}+\frac{1}{e}}_{\text {constant }}+3 e^{x}+2 \ln x \\
\frac{d y}{d x} & =0+3 e^{x}+\frac{2}{x} \\
& =3 e^{x}+\frac{2}{x}
\end{aligned}
$$

\#3. $f(t)=\frac{x^{2}}{t^{2}}+\frac{t^{2}}{x^{2}}+t x$

$$
f^{\prime}(t)=-\frac{2 x^{2}}{t^{3}}+\frac{2 t}{x^{2}}+x
$$

\#4.

$$
\begin{aligned}
& P(c)=\pi c \cos (\pi x)+\frac{\pi}{c}+c+c e^{x} \\
& P^{\prime}(c)=\pi \cos (\pi x)-\frac{x}{c^{2}}+1+e^{x}
\end{aligned}
$$

45. Point: $\left(0,\left.y\right|_{x=0}=1\right)$.

Slope: $\left.y^{\prime}\right|_{x=0}=2 e^{2 x}+\left.2\right|_{x=0}=4$.

$$
\begin{aligned}
& \Rightarrow y-1=4(x-0) \\
& \Leftrightarrow y=4 x+1
\end{aligned}
$$

\#6. point : $\left(0,\left.y\right|_{x=0}=1\right)$
Slope: $\left.y^{\prime}\right|_{x=0}=1-\left.\sin x\right|_{x=0}=1$.

$$
\begin{gathered}
\Rightarrow y-1=1 \cdot(x-0) \\
\Leftrightarrow y=x+1
\end{gathered}
$$

\#7. point: $(2,1)$
slope: $\left.\frac{d y}{d x}\right|_{(2,1)}=$?

$$
\frac{d y}{d x}=? \quad 4 x^{2}+9 y^{2}=25
$$

$$
\begin{aligned}
& \text { Implicit } l \\
& \text { diff. }
\end{aligned} 8 x d x+18 y d y=0
$$

$$
\frac{d y}{d x}=\frac{8 x}{-18 y}=\frac{-4 x}{9 y}=-\frac{8}{9}
$$

So $y-1=-\frac{8}{9}(x-2)=-\frac{8}{9} x+\frac{16}{9}$

$$
\Leftrightarrow y=-\frac{8}{9} x+\frac{25}{9}
$$

\#8. point $(\sqrt{2}, 1)$
Slope: $\left.\frac{d y}{d x}\right|_{(\sqrt{2}, 1)}=$?

$$
\frac{d y}{d x}=? \quad x^{2}-y^{2}=1
$$

$$
\text { implecut } 2 x d x-2 y d y=0 . \Leftrightarrow \frac{d y}{d x}=\frac{x}{y}
$$

So $y-1=\sqrt{2}(x-\sqrt{2})$ $=\frac{\sqrt{2}}{1}=\sqrt{2}$.
$\Leftrightarrow y=\sqrt{2} x-1$
\#9. $z=x^{3} e^{3 x}$

$$
\begin{aligned}
\frac{d z}{d x} & =3 x^{2} \cdot e^{3 x}+x^{3} \cdot 3 e^{3 x} \\
& =\left(3 x^{3}+3 x^{2}\right) e^{3 x}
\end{aligned}
$$

*10. $A(\theta)=\theta e^{\theta} \cos \theta$

$$
\begin{aligned}
\frac{d A}{d \theta}=A^{\prime}(a) & =1 \cdot e^{a} \cos \theta+\theta \cdot e^{a} \cos \theta-a e^{a} \sin \theta \\
& =e^{a}(\cos a+a \cos \theta-a \sin \theta)
\end{aligned}
$$

\#11.

$$
\begin{aligned}
& P(l)=\ln \left(l^{2}+\sin l\right) \\
& P^{\prime}(l)=\frac{2 l+\cos \ell}{\ell^{2}+\sin l}
\end{aligned}
$$

\#12.

$$
\begin{aligned}
Q(\pi) & =\cos \left(\sin \left(\pi^{2}\right)\right) \\
Q^{\prime}(\pi) & =-\sin \left(\sin \left(\pi^{2}\right)\right)\left(\sin \left(\pi^{2}\right)\right)^{\prime} \\
& =-\sin \left(\sin \left(\pi^{2}\right)\right) \cos \left(\pi^{2}\right) \cdot 2 \pi . \\
& =-2 \pi \sin \left(\sin \left(\pi^{2}\right) \cos \left(\pi^{2}\right) .\right.
\end{aligned}
$$

\#13.

$$
\begin{aligned}
& h(t)=64-\frac{1}{2} g t^{2} \\
& h^{\prime}(t)=-g t \\
& h^{\prime \prime}(t)=-g \quad \cdots I
\end{aligned}
$$

when the object hits Constant at anytime) $h(t)$ is zeno.

$$
0=64-\frac{1}{2} g t^{2} .
$$

$t^{2}=\frac{128}{g}$. Hence when
$t_{\text {gland }}^{\text {bit }}=8 \sqrt{\frac{2}{g}}$, the object hits the
Hence the velocity at $t_{\text {grand }}$ is

$$
v^{\prime}\left(t_{\text {grand }}\right)=-g \cdot 8 \sqrt{\frac{2}{g}}=-8 \sqrt{2 g} .
$$

\#14. $x(t)=t^{4}+2 t$

$$
\begin{array}{ll}
v(t)=x^{\prime}(t)=4 t^{3}+2 \quad \text { att } 1 \tag{6}\\
a(t)=x^{\prime \prime}(t)=12 t^{2} . & \overrightarrow{a t=1}
\end{array}
$$

\#15.

$$
\begin{gather*}
A(a)=\frac{\sqrt{3}}{4} a^{2} \tag{12}\\
\frac{d A}{d t}=3 \text { inch }^{2} / \text { sec }: \text { given. }
\end{gather*}
$$

Find: $\frac{d a}{d t}$.

Chain rule:

$$
\frac{d A}{d t}=\frac{\sqrt{3}}{2} a \frac{d a}{d t}
$$

Another given condition says
When Area $=4 \sqrt{3}$, we're supposed to fond $\frac{d a}{d t}$.

$$
\text { From } A=4 \sqrt{3}=\frac{\sqrt{3}}{4} a^{2} \text {, }
$$

$$
a=4 .
$$

$$
\text { Han He ce, } \frac{d a}{d t}=\frac{d A / d t}{\frac{\sqrt{3}}{2} a}
$$

$$
=\frac{3}{\frac{\sqrt{3}}{2} \cdot 4}
$$

$$
=\left(\frac{\sqrt{3}}{2}\right)^{2} .
$$

\#16. $V(a)=\frac{\sqrt{2}}{12} a^{3}$.
Given that $\frac{d V}{d t}=120 \mathrm{~min}^{3} / \mathrm{sec}$.
when

$$
\begin{aligned}
& V(a)=\frac{8 \sqrt{2}}{}=\frac{\sqrt{2}}{12} a^{3} \\
& \Leftrightarrow a^{3}=8
\end{aligned}
$$

$$
\text { So } a=2 \text {. }
$$

Chain rule:

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{\sqrt{2}}{4} a^{2} \frac{d a}{d t}=120 \\
& \frac{d a}{d t}=\frac{120}{\frac{\sqrt{2}}{4} \cdot 2^{2}}=\frac{120}{\sqrt{2}}=6020
\end{aligned}
$$

$\# 1 \eta$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(x+h)^{2}-1-\left(2 x^{2}-1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}-1-2 x^{2}+1}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x h+2 x^{h}}{h}=4 x .
\end{aligned}
$$

$$
\text { \#18. } \begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+(x+h)-\left(x^{2}+x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+x+h-x^{2}-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+h}{h}=2 x+1 .
\end{aligned}
$$

