Review Problems for Exam III
 MATH 155 Section 08
 Exam date and time: December 17th, 2015. 6:20PM-8:20PM

Review Problems

1. (5 points) Let R be the region in the $x y$-plane bounded by the curves $y=\sqrt{x}$ and $y=x^{3}$. Set up an integral which equals the volume of the solid formed by rotating the region R around the x -axis. Do not evaluate the integral.
2. (10 points) Find the surface area of an ellipsoid obtained by rotating an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about x-axis, where $a>b$.
3. (10 points) Calculate the following integral:

$$
\int e^{2 x} \cos 3 x d x
$$

4. (5 points each) Evaluate or show divergence: (1) $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ (2) $\int_{0}^{\infty} e^{-2 x} d x$.
5. (5 points each) Compute the limit of the sequence or show divergence:
(1) $\lim _{k \rightarrow \infty} \frac{e^{k}}{k}$. (2) $\lim _{n \rightarrow \infty} \frac{\sin (2 n)}{n^{2}}$. (3) $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{e^{k}}$.
6. Given an infinite series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}
$$

show that the series is divergent using indicated methods: (1) (3 points) The comparison test. (You can use $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is divergent without proof.) (2) (7 points) The integral test. (You should compute a divergent integral you need for comparison.)
7. (5 points) Show that the given series is convergent: $\sum_{n=2}^{\infty}(-1)^{n} \frac{\ln n}{n}$.
8. (10 points) Write down the degree 3 Taylor polynomial centered at 0 :

$$
p_{3}(x)=\sum_{k=0}^{3} \frac{f^{(k)}(0)}{k!} x^{k}
$$

for given $f(x)=1+\sin x$.
9. (10 points) Find the interval of convergence of the power series: $\sum_{n=2}^{\infty} \frac{2^{n}}{n!} x^{n}$. (Clearly mention whether your final answer is a(n) open, half-open, or closed interval!)
10. (1) (5 points) Let C be a circle of radius 3 centered at $(0,3)$. Write the equation of C in the polar coodinate.
(2) (10 points) Calculate the enclosed area by the cardioid $r=1-\cos \theta$. (See overleaf for picture. It is the heart-shape closed curve.)
2

