6. Given an infinite series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}
$$

show that the series is divergent using indicated methods: (1) (3 points) The comparison test. (You can use $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is divergent without proof.)

Solution. Notice that, for all positive integer n,

$$
\frac{1}{\sqrt{2 n}}=\frac{1}{\sqrt{n+n}} \leq \frac{1}{\sqrt{n+1}}
$$

Hence

$$
\frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \leq \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}
$$

where the left-hand side is divergent by being a p-series with $p=1 / 2$.

