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MAT 155                 Project IX                        Spring 2014
                         Increasing and Decreasing                        
BYUNG DO PARK

 
Your work should be done neatly in the same format as previous labs and saved regularly as 
yourname9.mws and as yourname9b.mws.  

You should write comments as you work.  To do so just backspace in front of the prompt > and type 
in the comments.  They should appear in black not in red.   When you finish the lab be sure to go over 
your comments and check the grammar.

Problem 1:  Local Maxima and Critical Points
a) Define a function f which takes x to x^3-x.  
b) Graph it from -1.5 to 1.5.  Write a comment explaining where the function increases and where it 
decreases. Try to estimate where it switches from increasing to decreasing.  Such points are called local
maxima.  What is the slope at the points where it switches?  Now check where it switches from 
decreasing to increasing.  These are the local minima.  What is the slope of f at the local minima?  
c) Find its derivative using the D command and graph the derivative from -1.5 to 1.5 using
> plot(D(f)(x), x=-1.5..1.5);
d) Write a comment discussing where the derivative is positive and where it is negative. Use solve to 
find out where the derivative is 0.  A points where the derivative is zero is called a critical point.  How 
are the critical points you've found related to the graph of f ?  How are they related to the local minima 
and maxima?

f:=x->x^3-x;

f := x/x3Kx

plot(f(x),x=-1.5..1.5);
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D(f);

x/3 x2K1

plot(D(f)(x),x=-1.5..1.5);
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criticalnum:=solve(D(f)(x)=0,x);
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restart;

Problem 2: Don't forget to restart.    
Repeat problem 1 with f(x)= 3x-exp(3x).  You may need to use fsolve in step d.

f:=x->3*x-exp(3*x);
f := x/3 xKe3 x

plot(f(x),x=-1.5..1.5);
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D(f);
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plot(D(f)(x),x=-1.5..1.5);
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fsolve(D(f)(x)=0,x);
0.

restart;
Problem 3: A special critical point:
Repeat problem 1 with f(x)=tan(x)-x.  Notice that this function is always increasing but the slope is zero
at one point between -1.5 and 1.5.  Explain.      Can a point be a critical point even though it isn't a local
minimum nor a local maximum?  Examine the graph near that point.  What is its linear approximation 
at that point? 

f:=x->tan(x)-x;
f := x/tan x Kx

plot(f(x),x=-10..10);
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D(f);

x/tan x 2

fsolve(D(f)(x)=0,x=-1..2);
0.

plot(D(f)(x));
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Problem 4:  Locating the interesting part of a graph
a)  The graph of f(x)=x^2-200x+10101   is a parabola but it is difficult to choose good x and y bounds 
to make it look like one. The best way to graph it well is to find the location of its local minimum.  A 
graph switches from decreasing to increasing at a local minimum, so it has a critical point there.  You 
can find it by solving  D(f)(x)=0.   Then graph f,  making sure to include the local minimum.
b)  repeat part a) with f(x)= 202x-x^2   and comment.

f:=x->x^2-200*x+10101; plot(f(x));
f := x/x2K200 xC10101
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D(f);
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solve(D(f)(x));
100

f(100);
101

plot(f(x), x=90..110, y=91..111);
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f:=x-> 202*x-x^2; plot(f(x));

f := x/202 xKx2
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D(f);
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solve(D(f)(x),x);
101

f(101);
10201

plot(f(x),x=91..111, y=10191..10211);
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Exploration: Examine other graphs of functions and their derivatives to study where the function 
increases and decreases.  Some functions to look at are sqrt(6-x), 1/x, x-2/x and/or 1/(1+x^2).

f:=x->sqrt(6-x); plot(f(x)); D(f); plot(D(f)(x));

f := x/ 6Kx
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f:=x->1/x; plot(f(x)); D(f); plot(D(f)(x));

f := x/
1
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f:=x->x-2/x; plot(f(x)); D(f); plot(D(f)(x));

f := x/xK
2
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f:=x->1/(1+x^2); plot(f(x)); D(f); plot(D(f)(x));

f := x/
1

1Cx2
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