Calculus I Final Exam Practice
Spring 2014, MAT 155 Section 04LB[51293]
May 1st, 2014. 11:00AM-12:40PM.

Problems on Integration
1.(Sample Final 15) A particle moves along the x-axis with an acceleration given by $a(t)=2 t-1$, where t is measured in seconds and s (position) is measured in meters. If the initial position is given by $s(0)=3$ and the initial velocity is given by $v(0)=4$ then find the position of the particle at t seconds.
2.(Sample Final 15 variant) A particle, initially at rest, moves along the x-axis such that its acceleration at time $t>0$ is given by $a(t)=\cos t$. At the time $t=0$, its position is $x=3$. (1) Find the velocity and position of the particle. (2) Find the values of t for which the particle is at rest.
3.(Sample Final 16) Find the area under the curve $y=12-3 x^{2}$ from $x=-1$ to $x=1$.
4.(Sample Final 16) What is the area between the curve $y=-3 x^{2}+12$ and the x-axis from $x=0$ to $x=2$?
5.(Sample Final 17) Evaluate the derivative $F^{\prime}(x)$ of the function $F(x)$ defined by:

$$
F(x)=\int_{0}^{x} \frac{1}{1+x^{3}} d x
$$

at $x=1$.
6.(Sample Final 17 variant) Find $F^{\prime}(x)$ for given $F(x)$:
(1) $F(x)=\int_{x}^{2014} t \cos t d t$
(2) $F(x)=\int_{x}^{2015} \frac{t^{2}}{t^{2}+1} d t$
(3) $F(x)=\int_{x+2}^{x}\left(x^{2}+1\right) d t$
(4) $F(x)=\int_{3 x^{3}}^{2 x^{2}} \cos ^{2} t d t$
7.(Sample Final 18.(b)) Evaluate $\int 3(8 y-1) e^{4 y^{2}-y} d y$.
8.(MAT176 Sample Final 1 variant) Evaluate the indefinite integrals(find the general antiderivatives), and check by differentiating:
(1) $\int\left(2 x^{2}-\frac{2}{x^{2}}\right) d x$
(2) $\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta$
(3) $\int \frac{1}{1-2 x} d x$
(4) $\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x$
9.(MAT176 Sample Final 5 variant) Evaluate the definite integrals:
(1) $\int_{1}^{3}(9+x)^{2} d x$
(2) $\int_{0}^{1} 2 x \sqrt{1+x^{2}} d x$
(3) $\int \frac{1}{1-2 x} d x$
(4) $\int_{-2}^{-4} e^{-x} d x$
(5) $\int_{\frac{\pi}{2}}^{\pi} x \cos (x) d x$
10.(MAT176 Sample Final 6) Set up an integral which equals the area of the region R in the $x y$-plane bounded by the curves $y=\sqrt[3]{x}$ and $y=x^{3}$; do not evaluate the integral.

