Calculus I Final Exam Practice

Spring 2014, MAT 155 Section 04LB[51293] May 1st, 2014. 11:00AM - 12:40PM.

PROBLEMS ON INTEGRATION

1.(Sample Final 15) A particle moves along the x-axis with an acceleration given by a(t) = 2t - 1, where t is measured in seconds and s (position) is measured in meters. If the initial position is given by s(0) = 3 and the initial velocity is given by v(0) = 4 then find the position of the particle at t seconds.

2.(Sample Final 15 variant) A particle, initially at rest, moves along the x-axis such that its acceleration at time t > 0 is given by $a(t) = \cos t$. At the time t = 0, its position is x = 3. (1) Find the velocity and position of the particle. (2) Find the values of t for which the particle is at rest.

3.(Sample Final 16) Find the area under the curve $y = 12 - 3x^2$ from x = -1 to x = 1.

4.(Sample Final 16) What is the area between the curve $y = -3x^2 + 12$ and the x-axis from x = 0 to x = 2?

5.(Sample Final 17) Evaluate the derivative F'(x) of the function F(x) defined by:

$$F(x) = \int_0^x \frac{1}{1+x^3} dx$$

at x = 1.

6.(Sample Final 17 variant) Find
$$F'(x)$$
 for given $F(x)$:
(1) $F(x) = \int_{x}^{2014} t \cos t dt$ (2) $F(x) = \int_{x}^{2015} \frac{t^2}{t^2+1} dt$ (3) $F(x) = \int_{x+2}^{x} (x^2+1) dt$
(4) $F(x) = \int_{3x^3}^{2x^2} \cos^2 t dt$

7.(Sample Final 18.(b)) Evaluate $\int 3(8y-1)e^{4y^2-y}dy$

8.(MAT176 Sample Final 1 variant) Evaluate the indefinite integrals(find the general antiderivatives), <u>and</u> check by differentiating:

 $(1)\int (2x^2 - \frac{2}{x^2})dx \qquad (2)\int \frac{\cos\theta}{\sin^2\theta}d\theta \qquad (3)\int \frac{1}{1-2x}dx \qquad (4)\int \frac{\sin\sqrt{x}}{\sqrt{x}}dx$

9.(MAT176 Sample Final 5 variant) Evaluate the definite integrals: $(1)\int_{1}^{3}(9+x)^{2}dx$ (2) $\int_{0}^{1}2x\sqrt{1+x^{2}}dx$ (3) $\int \frac{1}{1-2x}dx$ (4) $\int_{-2}^{-4}e^{-x}dx$ $(5)\int_{\frac{\pi}{2}}^{\pi}x\cos(x)dx$

10.(MAT176 Sample Final 6) Set up an integral which equals the area of the region R in the xy-plane bounded by the curves $y = \sqrt[3]{x}$ and $y = x^3$; do not evaluate the integral.