Midterm Exam I

Spring 2014, MAT175 Section B401[51350]
March 13th, 2014. 9:00AM-10:40AM

Instructions: Print your name on the exam booklet. This exam is closed-book and closed-note. You cannot use any electronic device in this exam. You are not allowed to talk to other students. Write all details explicitly. Answers without justifications and/or calculation steps may receive no score. Hand-in blue booklet only, and keep the exam paper for your study.

Part I - 5 points each, total 55 points

1.(Sample Final I-9) Evaluate the following limit:

$$
\lim _{x \rightarrow 6} \frac{2 x+1}{\sqrt{x+3}}
$$

2.(Sample Final I-8) Evaluate the following limit:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

3. Evaluate the following limit:

$$
\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3}
$$

4.(Sample Final II-7 variant) Evaluate the following limit:

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 3 x}
$$

5. (Sample Final I-16) Find the constant a such that the function is continuous on the entire real number line.

$$
f(x)=\left\{\begin{array}{cl}
x^{3} & \text { if } x \leq 1 \\
a x^{2} & \text { if } x>1
\end{array}\right.
$$

6. (5 points) Evaluate the following limit:

$$
\lim _{x \rightarrow e}\left(\ln x^{2}+2^{x / e}\right)
$$

7. (5 points) Find all vertical asymptotes of the following:

$$
f(x)=\frac{x+1}{x^{2}-1} .
$$

8.(Sample Final I-1) Compute the derivative $\frac{d y}{d x}$ for $y=e^{2}+\frac{1}{e}+3 e^{x}+2 \ln x$.(5 Points)
9.(Sample Final I-2) Compute the derivative $p^{\prime}(c)$ of the function $p(c)=\pi c \cos (\pi x)+\frac{x}{c}+c+c e^{x}$. (5 Points) Hint: What is the variable? What are constants?
10.(Sample Final I-3) Write down an equation of the tangent line to the graph of $y=x+\cos x$ at the point where $x=0$.
11.(Sample Final I-12) If the position of a particle moving in a straight line is given by $x(t)=t^{4}+2 t$ after t seconds, find both the velocity and the acceleration of the particle when $t=1$.

Part II - points varies, total 45 points

12.(Sample Final I-15) Show that the derivative of $f(x)=2 x^{2}-1$ is $f^{\prime}(x)=4 x$ by using the definition of the derivative as the limit of a difference quotient.(10 Points)
13. (10 points) By using the squeeze theorem(i.e. the sandwich lemma), show that:

$$
\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0
$$

14. (10 points) For the function $f(x)=\frac{|x|}{x}$, discuss existence of limit as x approaches to 0 .
15. (10 points) Using the intermediate value theorem, show that $f(x)=x^{3}-3 x$ has at least one zero in the interval $[1,4]$. (No point will be given if you do not use the intermediate value theorem)
16. (5 points) Prove or disprove the following statement: "Any continuous function defined on \mathbb{R} is differentiable."
