Midterm Exam II Practice Test
Spring 2014, MAT175 Section B401[51350]

Instructions: Write all details explicitly. Answers without justifications and/or calculation steps may receive no score.

Part I - There will be 8 problems in actual exam. ${ }^{1}$
1.(Sample Final I-4) Determine the slope of the tangent line to the graph of the equation $x^{2}-y^{2}=1$ at the point $(\sqrt{2}, 1)$.(5 Points) Hint: Implicit differentiation
2.(Sample Final I-5) Compute the derivative $\frac{d A}{d \theta}$ of the function $A(\theta)=\theta e^{\theta} \cos \theta \cdot(5$ Points)
3.(Sample Final I-6) Compute the derivative $Q^{\prime}(\pi)$ of the function $Q(\pi)=\cos \left(\sin \left(\pi^{2}\right)\right)$, where π is a variable and NOT a constant $\pi=3.141592 \ldots$. 5 Points)
4.(Sample Final I-10) If the volume $V(a)=\frac{\sqrt{2}}{12} a^{3}$ of an expanding equilateral tetrahedron with the length a of sides is increasing at the constant rate of 120 cubic inches per second, how fast is the length a increasing when the volume is $\frac{2 \sqrt{2}}{3}$ cubic inches?(5 Points)
5.(Sample Final II-9) Find the limit:(5 Points)

$$
\lim _{x \rightarrow \infty} \frac{x^{3}+2 x+1}{x^{2}+x+1}
$$

6.(Sample Final II-9) Find the limit:(5 Points)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x}+2}{x+1}
$$

7.(Sample Final I-7) Find the limit:(5 Points)

$$
\lim _{t \rightarrow \infty} \frac{\cos t}{e^{2 t}+1}
$$

8. (Sample Final I-7) Find the limit: $\lim _{t \rightarrow-\infty} e^{t} \sin 2 t$.(5 Points)
9.(Sample Final II-9) Find the limit:(5 Points)

$$
\lim _{x \rightarrow \infty} \frac{2013 x^{3}+2014 x^{2}+2015 x+2016}{2013 x^{3}+2012 x^{2}+2011 x+2010}
$$

[^0]10.(Sample Final II-9) Find the limit:(5 Points)
$$
\lim _{x \rightarrow \infty} \frac{x+\frac{1}{x}}{x^{2}-\frac{1}{x^{2}}}
$$

Part II - 6 problems will appear in the second midterm identically!

11.(Sample Final I-13) Find the absolute maximum and minimum values of $f(x)=2 x^{3}-4 x^{2}$ on the closed interval $[-1,2] .(10$ Points)
12.(Sample Final I-13) Find the absolute maximum and minimum values of $f(x)=x^{3}-x^{2}$ on the closed interval [0, 1].(10 Points)
13.(Sample Final I-14) Find all relative extrema of $F(x)=x^{4}+5 x^{2}+6 .(10$ Points $)$
14.(Sample Final I-14) Find all relative extrema of $F(x)=x^{3}-x^{2} .(10$ Points)
15.(Sample Final I-14) Find all relative extrema of $F(x)=2 x+\frac{2}{x}$. (10 Points)
16.(Sample Final I-11) Find where the graph of $y=-x^{3}+x^{2}+2 x-1$ is concave up and concave down, and find all inflection points.(10 Points)
17.(Sample Final I-11) Find where the graph of $y=x^{3}-x^{2}$ is concave up and concave down, and find all inflection points.(10 Points)
18.(Sample Final I-11) Find concavity and inflection points of the graph of $y=x^{4}-4 x^{3}$.(10 Points)
19.(Sample Final 18) Sixty meters of fencing are to be used to enclose a rectangular garden. Find the dimensions that will give the maximum area.(5 points)
20.(Sample Final 18) The revenue from the sale of x items is $R(x)=800 x-2 x^{2}$ dollars and the cost to produce these x items is $C(x)=2 x^{2}+1000$ dollars. How many items should be produced to maximize profit?(5 points)

[^0]: ${ }^{1} 4$ problems in the types of $\# 1$ to $\# 4$, and 4 problems on infinite limits

