We want to show that

$$\lim_{(a,b)\to(0,0)} \frac{|a||b|}{\sqrt{a^2+b^2}} = 0.$$

Proof. Notice that $|a| \leq \sqrt{a^2 + b^2}$ and $|b| \leq \sqrt{a^2 + b^2}$ and also that

$$\frac{|a||b|}{\sqrt{a^2+b^2}} \le \frac{a^2+b^2}{\sqrt{a^2+b^2}} = \sqrt{a^2+b^2}.$$

Now for every $\varepsilon>0$ there is $\delta=\varepsilon$ such that $0<\|(a,b)-(0,0)\|=\sqrt{a^2+b^2}<\delta$ implies

$$\left| \frac{|a||b|}{\sqrt{a^2 + b^2}} - 0 \right| \le \sqrt{a^2 + b^2} < \delta = \varepsilon.$$

Another solution suggested by Mr. Simon Weil.

Proof. Pick any path $\alpha:[0,1]\to\mathbb{R}^2$ such that $\alpha(0)=(a,b)$ and $\alpha(1)=(0,0)$. Let $r=|\alpha(t)|$ and θ be the angle between the vector $\alpha(t)$ and the x-axis measured counterclockwise.

$$\lim_{(a,b)\to(0,0)} \frac{|a||b|}{\sqrt{a^2 + b^2}} = \lim_{t\to 1} \frac{r|\cos(\theta)| \cdot r|\sin(\theta)|}{\sqrt{|r^2\cos^2\theta + r^2\sin^2\theta}}$$
$$= \lim_{t\to 1} \frac{r^2|\frac{1}{2}\sin(2\theta)|}{|r|} = \lim_{t\to 1} r|\frac{1}{2}\sin(2\theta)| = 0.$$

To see the last equality is indeed the case, one can use the squeeze theorem. Also notice that r and θ both are functions in t where $r \to 0$ as $t \to 1$.