We want to show that

$$
\lim _{(a, b) \rightarrow(0,0)} \frac{|a||b|}{\sqrt{a^{2}+b^{2}}}=0
$$

Proof. Notice that $|a| \leq \sqrt{a^{2}+b^{2}}$ and $|b| \leq \sqrt{a^{2}+b^{2}}$ and also that

$$
\frac{|a||b|}{\sqrt{a^{2}+b^{2}}} \leq \frac{a^{2}+b^{2}}{\sqrt{a^{2}+b^{2}}}=\sqrt{a^{2}+b^{2}} .
$$

Now for every $\varepsilon>0$ there is $\delta=\varepsilon$ such that $0<\|(a, b)-(0,0)\|=\sqrt{a^{2}+b^{2}}<\delta$ implies

$$
\left|\frac{|a||b|}{\sqrt{a^{2}+b^{2}}}-0\right| \leq \sqrt{a^{2}+b^{2}}<\delta=\varepsilon .
$$

Another solution suggested by Mr. Simon Weil.
Proof. Pick any path $\alpha:[0,1] \rightarrow \mathbb{R}^{2}$ such that $\alpha(0)=(a, b)$ and $\alpha(1)=$ $(0,0)$. Let $r=|\alpha(t)|$ and θ be the angle between the vector $\alpha(t)$ and the x-axis measured counterclockwise.

$$
\begin{aligned}
\lim _{(a, b) \rightarrow(0,0)} \frac{|a||b|}{\sqrt{a^{2}+b^{2}}} & =\lim _{t \rightarrow 1} \frac{r|\cos (\theta)| \cdot r|\sin (\theta)|}{\sqrt{\mid r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta}} \\
& =\lim _{t \rightarrow 1} \frac{r^{2}\left|\frac{1}{2} \sin (2 \theta)\right|}{|r|}=\lim _{t \rightarrow 1} r\left|\frac{1}{2} \sin (2 \theta)\right|=0 .
\end{aligned}
$$

To see the last equality is indeed the case, one can use the squeeze theorem. Also notice that r and θ both are functions in t where $r \rightarrow 0$ as $t \rightarrow 1$.

