Exercise 2.2.8 (b)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin x y}{y}=0
$$

Proof. First notice that $|\sin \theta| \leq|\theta|$ if $|\theta|$ is a very small positive number close to 0 . This means

$$
\begin{equation*}
\left|\frac{\sin x y}{y}\right| \leq \frac{|x y|}{|y|}=|x| \leq \sqrt{x^{2}+y^{2}} \tag{1}
\end{equation*}
$$

We now use the $\varepsilon-\delta$ argument to show that the limit is actually 0 . We have to show: For every $\varepsilon>0$, there exists $\delta>0$ such that $0<\|(x, y)-(0,0)\|=\sqrt{x^{2}+y^{2}}<\delta$ implies $\left|\frac{\sin x y}{y}-0\right|<\varepsilon$. By the inequality (1) above, we can take $\varepsilon=\delta$.

