Consider a function

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \frac{1}{x} & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

This function is differentiable every $x \in \mathbb{R}$ but continuous at all $x \in \mathbb{R}$ except $x=0$.
Proof. Step I: Let $x \neq 0$. Then

$$
f^{\prime}(x)=2 x \sin \frac{1}{x}-\cos \frac{1}{x}
$$

This shows that the function f is differentiable at x and f^{\prime} is continuous at x as long as $x \neq 0$.
Step II: We claim that f is differentiable at $x=0$. By definition,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h}}{h} .
$$

An application of the squeeze theorem using

$$
-h \leq \frac{h^{2} \sin \frac{1}{h}}{h}=h \sin \frac{1}{h} \leq h
$$

as h tends to 0 implies that $f^{\prime}(0)=0$. Notice that $\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0}\left[2 x \sin \frac{1}{x}-\cos \frac{1}{x}\right]$ is not 0 because $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ does not exist.

