Exercise 3.3.31. Write the number 120 as a sum of three numbers so that the sum of the products taken two at a time is a maximum.

Solution. Let $x+y+z=120$ or $z=120-x-y$. We want to find a global maximum of $f(x, y)=$ $x y+y(120-x-y)+x(120-x-y)$ on \mathbb{R}^{2} if exists. Since f is clearly a C^{1}-function, if there is any global maximum it must be a critical point while being a local maximum; i.e. $\nabla f\left(x_{0}, y_{0}\right)=0$. By rewriting this equation, we get $120-2 x_{0}-y_{0}=0$ and $120-2 y_{0}-x_{0}=0$. By solving this system of equations we get $\left(x_{0}, y_{0}\right)=(40,40)$.

We verify that, at (x_{0}, y_{0}) we have a local maximum. Since $f_{x x}=-2, f_{y y}=-2$, and $f_{x y}=-1$ for all $(x, y) \in \mathbb{R}^{2}$, we see that the Hessian of f at $\left(x_{0}, y_{0}\right)$ is also

$$
H f\left(x_{0}, y_{0}\right)(\vec{h})=(\vec{h})^{T}\left(\begin{array}{ll}
-2 & -1 \\
-1 & -2
\end{array}\right) \vec{h}
$$

Since the (1,1) entry is negative and $\left|H f\left(x_{0}, y_{0}\right)\right|=3>0$, by the second derivative test, the function f of class C^{2} attains strict local maximum at $\left(x_{0}, y_{0}\right)$.

We claim that this local maximum is the global maximum, because, for any (x, y), the $(1,1)$ entry of the Hessian of f is negative and $|H f(x, y)|=3>0$, and hence there is no other local maxima or saddle points which might result in bigger values of f. Therefore we conclude that when three numbers are 40,40 , and 40 , the product attains the maximum.

