Take-home Midterm Exam (Corrected version)
 MATH 250 Section 02

 From April 13th, 2016 7:25pm to April 20th, 2016 5:35pm.

 From April 13th, 2016 7:25pm to April 20th, 2016 5:35pm.

 Deadline: April 20th, 2016 5:35pm.

 Deadline: April 20th, 2016 5:35pm.}

Instructions: Policies of this exam are described on coversheet. You can keep this problem sheet. Please submit your solutions with the coversheet stapled on the top. Please note that late-submissions are NOT accepted.

1. Prove the following result: $\left|\begin{array}{ccc}1 & a & a^{3} \\ 1 & b & b^{3} \\ 1 & c & c^{3}\end{array}\right|=(b-c)(c-a)(a-b)(a+b+c)$.
2. Prove if the following statement is true, or disprove by giving an example if it is false:

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function on A whose all first partial derivatives $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}$ exist at $\vec{x}_{0} \in A$. Then the function f is continuous at $\vec{x}_{0} \in A$.
3. Determine whether the following functions is differentiable:

$$
f(x, y)=\frac{x}{y}+\frac{y}{x} \text { if } x \text { and } y \text { both are nonzero and } f(x, y)=0 \text { if } x=0 \text { or } y=0 .
$$

4. Find a unit vector normal to the surface S given by $x^{3} y^{3}+y-z=1$ at $\vec{x}_{0}=(1,1,1)$.
5. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable at $\vec{x}_{0} \in \mathbb{R}^{3}$. Prove that

$$
\lim _{\vec{x} \rightarrow \vec{x}_{0}} \frac{\left|f(\vec{x})-f\left(\vec{x}_{0}\right)\right|}{\left\|\vec{x}-\vec{x}_{0}\right\|}
$$

is bounded by a positive constant. (Hint: Use the triangle inequality and the Cauchy-Schwarz inequality)

Please see overleaf

6. Let j be the coordinate change map from the spherical coordinate to the cartesian coordinate defined by

$$
\begin{aligned}
x & =r \cos \theta \sin \phi \\
y & =r \sin \theta \sin \phi \\
z & =r \cos \phi
\end{aligned}
$$

Also let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a differentiable map. Calculate $D(f \circ j)$.
7. Let $f(x, y)=x^{5}+y^{4}+3 x^{2}+2 x y+2 x+y^{2}+2 y+1$. Find the second-order Taylor approximation of f at $(1,0)$.
8. For given $f(x, y, z)=x^{2}+y^{2}+z^{2}-x y z$ find all critical points and determine whether they are local minima, local maxima, saddle points, or none of them.
9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{2}-y^{2}$, and S the unit circle in \mathbb{R}^{2}. Find the extrema of $\left.f\right|_{S}$ by using the bordered Hessian test. (No credit will be given if there is no use of bordered Hessian test.)
10. Let $f(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}$. Find the absolute maximum and minimum values of f on the elliptical region $x^{2}+\frac{1}{2} y^{2} \leq 1$.

