Solutions to take-home Midterm Exam
 MATH 250 Section 02

From April 13th, 2016 7:25pm to April 20th, 2016 5:35pm.

1. Prove the following result: $\left|\begin{array}{ccc}1 & a & a^{3} \\ 1 & b & b^{3} \\ 1 & c & c^{3}\end{array}\right|=(b-c)(c-a)(a-b)(a+b+c)$.

Solution. Expand the given determinant along the first column. We get

$$
\left|\begin{array}{lll}
1 & a & a^{3} \\
1 & b & b^{3} \\
1 & c & c^{3}
\end{array}\right|=\left|\begin{array}{cc}
b & b^{3} \\
c & c^{3}
\end{array}\right|-\left|\begin{array}{cc}
a & a^{3} \\
c & c^{3}
\end{array}\right|+\left|\begin{array}{cc}
a & a^{3} \\
b & b^{3}
\end{array}\right|=b c^{3}-c b^{3}-\left(a c^{3}-c a^{3}\right)+a b^{3}-b a^{3} .
$$

By rearranging terms, we see the far RHS is equal to the following. Factor out $(b-c)$.

$$
\begin{aligned}
& b c^{3}-c b^{3}+a b^{3}-a c^{3}-\left(b a^{3}-c a^{3}\right)=-b c\left(b^{2}-c^{2}\right)+a\left(b^{2}+b c+c^{2}\right)(b-c)-a^{3}(b-c) \\
= & -(b-c)\left(a^{3}-\left(b^{2}+b c+c^{2}\right) a+b c(b+c)\right)=-(b-c)(a-b)(a-c)(a+b+c) \\
= & (a-b)(b-c)(c-a)(a+b+c) .
\end{aligned}
$$

```
+5 for knowing determinant expansion.
```

2. Prove if the following statement is true, or disprove by giving an example if it is false:

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function on A whose all first partial derivatives $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}$ exist at $\vec{x}_{0} \in A$. Then the function f is continuous at $\vec{x}_{0} \in A$.

Solution. False. Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}1 & \text { if } x=0 \text { or } y=0 \\ 0 & \text { if } x \neq 0 \text { and } y \neq 0\end{cases}
$$

This function has $f_{x}(0,0)$ and $f_{y}(0,0)$;

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{1-1}{h}=0 \\
& f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{1-1}{h}=0
\end{aligned}
$$

However the function is not continuous at the origin. In the case $(x, y) \rightarrow(0,0)$ along x - or y-axes, $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=1=f(0,0)$ whereas $(x, y) \rightarrow(0,0)$ along the diagonal path $\left\{(x, y) \in \mathbb{R}^{2}: x=\right.$ $y\}, \lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$ whereas $f(0,0)=1$.

```
+5 for giving a right example. +3 for verifying existence of partial derivatives, +2
for verifying discontinuity at \vec{\mp@subsup{x}{0}{\prime}}\inA\mathrm{ .}
```

3. Determine whether the following functions is differentiable:

$$
f(x, y)=\frac{x}{y}+\frac{y}{x} \text { if } x \text { and } y \text { both are nonzero and } f(x, y)=0 \text { if } x=0 \text { or } y=0 .
$$

Solution. This question is asking if the given function is differentiable at every $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$.
Recall that
Proposition 1. If f is of class C^{1} at $\left(x_{0}, y_{0}\right)$ (i.e., f has all first partial derivatives at $\left(x_{0}, y_{0}\right)$ and the partial derivatives are continuous at at $\left.\left(x_{0}, y_{0}\right)\right)$, then f is differentiable.

We claim that our f is of class C^{1} at $\left(x_{0}, y_{0}\right)$ with nonzero x_{0} and y_{0}, since it has partial derivatives

$$
\begin{align*}
& \frac{\partial f}{\partial x}=\frac{1}{y}-\frac{y}{x^{2}} \\
& \frac{\partial f}{\partial y}=-\frac{x}{y^{2}}+\frac{1}{x} \tag{1}
\end{align*}
$$

and these are continuous functions at $\left(x_{0}, y_{0}\right)$ if x_{0} and y_{0} are nonzero. Therefore, by the Proposition 1 , differentiability of f follows.

Now let $x_{0} \neq 0$ and $y_{0}=0$. We first calculate partial derivatives of f at $\left(x_{0}, 0\right)$ if exists.

$$
\begin{align*}
& \left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, 0\right)}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, 0\right)-f\left(x_{0}, 0\right)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 \\
& \left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, 0\right)}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, 0+h\right)-f\left(x_{0}, 0\right)}{h}=\lim _{h \rightarrow 0} \frac{\frac{x_{0}}{h}+\frac{h}{x_{0}}}{h}=\lim _{h \rightarrow 0} \frac{x_{0}}{h^{2}}+\frac{1}{x_{0}}: \text { Does not exist. } \tag{2}
\end{align*}
$$

By similar calculations we conclude that $\left.\frac{\partial f}{\partial x}\right|_{\left(0, y_{0}\right)}$ does not exist and $\left.\frac{\partial f}{\partial y}\right|_{\left(0, y_{0}\right)}=0$ if $x_{0}=0$ and $y_{0} \neq 0$. In these two cases, since not all partial derivatives exist, f is not differentiable.

Consider the case that $x_{0}=y_{0}=0$. We have $\left.\frac{\partial f}{\partial x}\right|_{(0,0)}=0=\left.\frac{\partial f}{\partial y}\right|_{(0,0)}$. Now we check whether f has a good approximation at $(0,0)$. In other words, we check if the following equality holds:

$$
\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|f\left(h_{1}, h_{2}\right)-f(0,0)-\nabla f(0,0) \cdot\left(h_{1}, h_{2}\right)\right|}{\left\|\left(h_{1}, h_{2}\right)\right\|}=0 .
$$

We see that

$$
\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|f\left(\left(h_{1}, h_{2}\right)\right)-0-0\right|}{\left\|\left(h_{1}, h_{2}\right)\right\|}=\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|\frac{h_{1}}{h_{2}}+\frac{h_{2}}{h_{1}}\right|}{\sqrt{h_{1}^{2}+h_{2}^{2}}}=\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|\frac{h_{1}^{2}+h_{2}^{2}}{h_{1} h_{2}}\right|}{\sqrt{h_{1}^{2}+h_{2}^{2}}} .
$$

We claim that the far RHS is not zero.

$$
\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|\frac{h_{1}^{2}+h_{2}^{2}}{h_{1} h_{2}}\right|}{\sqrt{h_{1}^{2}+h_{2}^{2}}}=\lim _{r \rightarrow 0} \frac{\left|\frac{r^{2}}{r^{2} \sin \theta \cos \theta}\right|}{r}=\lim _{r \rightarrow 0}\left|\frac{1}{r \sin \theta \cos \theta}\right|
$$

which is not necessarily vanishing. Notice that we have used a substitution $h_{1}=r \cos \theta$ and $h_{2}=$ $r \sin \theta$ in the first equality. Therefore, we conclude that f is not differentiable at $\left(x_{0}, y_{0}\right)$ if one of coordinates is zero.

Any correct proof that f is not differentiable everywhere on \mathbb{R}^{2} gets credit.
4. Find a unit vector normal to the surface S given by $x^{3} y^{3}+y-z=1$ at $\vec{x}_{0}=(1,1,1)$.

Solution. The given surfact S is the level surface of $g(x, y, z)=1$ for $g(x, y, z):=x^{3} y^{3}+y-z$. The gradient vector at \vec{x}_{0} is a vector that is normal to S, whereas $\nabla g\left(\vec{x}_{0}\right)=\left.\left(3 x^{2} y^{3}, 3 x^{3} y^{2}+1,-1\right)\right|_{\vec{x}_{0}}=$ $(3,4,-1)$. By normalizing, we get

$$
\frac{\nabla g\left(\vec{x}_{0}\right)}{\left\|\nabla g\left(\vec{x}_{0}\right)\right\|}=\left(\frac{3}{\sqrt{26}}, \frac{4}{\sqrt{26}}, \frac{-1}{\sqrt{26}}\right)
$$

```
-2 for not normalizing
```

5. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable at $\vec{x}_{0} \in \mathbb{R}^{3}$. Prove that

$$
\lim _{\vec{x} \rightarrow \vec{x}_{0}} \frac{\left|f(\vec{x})-f\left(\vec{x}_{0}\right)\right|}{\left\|\vec{x}-\vec{x}_{0}\right\|}
$$

is bounded by a positive constant. (Hint: Use the triangle inequality and the Cauchy-Schwarz inequality)

Solution. Recall the following inequalities:

$$
\begin{equation*}
\|\vec{v}\|+\|\vec{w}\| \leq\|\vec{v}+\vec{w}\| \quad \text { for any } \vec{v}, \vec{w} \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

called the triangle inequality, and

$$
\begin{equation*}
|\vec{v} \cdot \vec{w}| \leq\|\vec{v}\|\|\vec{w}\| \quad \text { for any } \vec{v}, \vec{w} \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

which is called the Cauchy-Schwarz inequality. Note that the following inequality is nothing but a restatement of (3).

$$
\begin{equation*}
\|\vec{v}\|-\|\vec{w}\| \leq\|\vec{v}-\vec{w}\| \quad \text { for any } \vec{v}, \vec{w} \in \mathbb{R}^{n} \tag{5}
\end{equation*}
$$

This is because $\|\vec{v}\|=\|\vec{v}-\vec{w}+\vec{w}\|$.
Now we prove the given statement using the above inequalities. Recall that f is differentiable at \vec{x}_{0} if partial derivatives $f_{x_{1}}\left(\vec{x}_{0}\right), \cdots, f_{x_{n}}\left(\vec{x}_{0}\right)$ exists and

$$
\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right)-\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h} \mid\right.}{\|\vec{h}\|}=0
$$

Recall the $\epsilon-\delta$ definition of limit. (Section 2.2.) Having the above limit implies that there exists some $\delta>0$ such that $0<\|\vec{h}\|<\delta$ implies $\left|\frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right)-\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h} \mid\right.}{\|\vec{h}\|}-0\right|<1$. (Note: We chose $\varepsilon=1$ which we can.)

Therefore we look at

$$
\frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right)-\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h} \mid\right.}{\|\vec{h}\|}<1 .
$$

By (5), we observe that

$$
\frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right)\left|-\left|\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h}\right|\right.\right.}{\|\vec{h}\|} \leq \frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right)-\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h} \mid\right.}{\|\vec{h}\|}<1
$$

Hence

$$
\frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right) \mid\right.}{\|\vec{h}\|}<1+\frac{\left|\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h}\right|}{\|\vec{h}\|}
$$

and notice that by (4),

$$
1+\frac{\left|\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h}\right|}{\|\vec{h}\|} \leq 1+\frac{\left\|\nabla f\left(\vec{x}_{0}\right)\right\|\|\vec{h}\|}{\|\vec{h}\|}=1+\left\|\nabla f\left(\vec{x}_{0}\right)\right\|
$$

where the far RHS is a constant that is positive.
6. Let j be the coordinate change map from the spherical coordinate to the cartesian coordinate defined by

$$
\begin{aligned}
& x=r \cos \theta \sin \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \phi
\end{aligned}
$$

Also let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a differentiable map. Calculate $D(f \circ j)$.

Solution.

$$
\begin{aligned}
j: \mathbb{R}^{+} \times(0,2 \pi) \times(0, \pi) & \rightarrow \mathbb{R}^{3} \\
(r, \theta, \phi) & \mapsto(x, y, z)
\end{aligned}
$$

and

$$
D(j)(r, \theta, \phi)=\left(\begin{array}{lll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi}
\end{array}\right)(r, \theta, \phi)=\left(\begin{array}{ccc}
\cos \theta \sin \phi & -r \sin \theta \sin \phi & r \cos \theta \cos \phi \\
\sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\
\cos \phi & 0 & -r \sin \phi
\end{array}\right)
$$

By the chain rule,

$$
D(f \circ j)(r, \theta, \phi)=\left(\begin{array}{ccc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}
\end{array}\right)(x, y, z)\left(\begin{array}{ccc}
\cos \theta \sin \phi & -r \sin \theta \sin \phi & r \cos \theta \cos \phi \\
\sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\
\cos \phi & 0 & -r \sin \phi
\end{array}\right)(r, \theta, \phi)
$$

Therefore

$$
\begin{aligned}
& \frac{\partial(f \circ j)}{\partial r}=\cos \theta \sin \phi \frac{\partial f}{\partial x}+\sin \theta \sin \phi \frac{\partial f}{\partial y}+\cos \phi \frac{\partial f}{\partial z} \\
& \frac{\partial(f \circ j)}{\partial \theta}=-r \sin \theta \sin \phi \frac{\partial f}{\partial x}+r \cos \theta \sin \phi \frac{\partial f}{\partial y} \\
& \frac{\partial(f \circ j)}{\partial \phi}=r \cos \theta \cos \phi \frac{\partial f}{\partial x}+r \sin \theta \cos \phi \frac{\partial f}{\partial y}-r \sin \phi \frac{\partial f}{\partial z}
\end{aligned}
$$

+5 for correct calculation of $D(j)$.
7. Let $f(x, y)=x^{5}+y^{4}+3 x^{2}+2 x y+2 x+y^{2}+2 y+1$. Find the second order Taylor approximation of f at $(1,0)$.

Solution. Let $\vec{x}=(x, y)$ and $\vec{x}_{0}=(1,0)$. Recall that
$f\left(\vec{x}-\vec{x}_{0}\right)=f\left(\vec{x}_{0}\right)+\nabla f\left(\vec{x}_{0}\right) \cdot\left(\vec{x}-\vec{x}_{0}\right)+\frac{1}{2!}\left(\vec{x}-\vec{x}_{0}\right)^{T} H f\left(\vec{x}_{0}\right)\left(\vec{x}-\vec{x}_{0}\right)+R_{2}\left(\vec{x}_{0}, \vec{x}-\vec{x}_{0}\right)$.
Here $\left(\vec{x}-\vec{x}_{0}\right)^{T}$ denotes the transpose of the column vector $\vec{x}-\vec{x}_{0}$.
Since $f_{x}=5 x^{4}+6 x+2 y+2, f_{y}=4 y^{3}+2 x+2 y+2, f_{x x}=20 x^{3}+6, f_{x y}=2$, and $f_{y y}=12 y^{2}+2$, we have

$$
\begin{aligned}
f\left(\vec{x}-\vec{x}_{0}\right) & =7+(13,4) \cdot(x-1, y)+\frac{1}{2!}(x-1, y)^{T}\left(\begin{array}{cc}
26 & 2 \\
2 & 2
\end{array}\right)(x-1, y)+R_{2}((1,0),(x-1, y)) \\
& =7+13(x-1)+4 y+13(x-1)^{2}+(x-1) y+(x-1) y+y^{2}+R_{2}((1,0),(x-1, y))
\end{aligned}
$$

Therefore the second order Taylor approximation $P_{2}(x, y)$ of f is

$$
P_{2}(x, y)=7+13(x-1)+4 y+13(x-1)^{2}+2(x-1) y+x y+y^{2} .
$$

+5 for knowing Taylor approximation. Each incorrect term gets -1 for minor errors, -3 if the order of the term is not correct.
8. For given $f(x, y, z)=x^{2}+y^{2}+z^{2}-x y z$ find all critical points and determine whether they are local minima, local maxima, saddle points, or none of them.

Solution. Step 1: We find all critical points.

$$
\begin{aligned}
f_{x} & =2 x-y z=0 \\
f_{y} & =2 y-x z=0 \\
f_{z} & =2 z-x y=0
\end{aligned}
$$

By solving this system of equations, we get $x y z=0$ or $x y z=8$. In the case of the former, by using each of the equations, we conclude $x=y=z=0$, whereas in the case of the latter, we obtain $(x, y, z)=(2,2,2),(-2,-2,2),(-2,2,-2)$, and $(2,-2,-2)$.

Step 2: We compute the Hessian matrix $H f$ at each of the above points. Observe that

$$
\begin{array}{lll}
f_{x x}=+2 & f_{y x}=-z & f_{z x}=-y \\
f_{x y}=-z & f_{y y}=+2 & f_{z y}=-x \\
f_{x z}=-y & f_{y z}=-x & f_{z z}=+2
\end{array}
$$

So we get

$$
\begin{aligned}
H f(0,0,0) & =\left|\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right|, \quad H_{1}=2, \quad H_{2}=4, \quad H_{3}=8 \\
H f(2,2,2) & =\left|\begin{array}{ccc}
2 & -2 & -2 \\
-2 & 2 & -2 \\
-2 & -2 & 2
\end{array}\right|, \quad H_{1}=2, \quad H_{2}=0, \quad H_{3}=-32 \\
H f(-2,-2,2) & =\left|\begin{array}{ccc}
2 & -2 & 2 \\
-2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right|, \quad H_{1}=2, \quad H_{2}=0, \quad H_{3}=-32 \\
H f(-2,2,-2) & =\left|\begin{array}{ccc}
2 & 2 & -2 \\
2 & 2 & 2 \\
-2 & 2 & 2 \\
\hline
\end{array}\right|, \quad H_{1}=2, \quad H_{2}=0, \quad H_{3}=-32 \\
H f(2,-2,-2) & =\left|\begin{array}{ccc}
2 & 2 & 2 \\
2 & 2 & -2 \\
2 & -2 & 2
\end{array}\right|, \quad H_{1}=2, \quad H_{2}=0, \quad H_{3}=-32
\end{aligned}
$$

By the determinant test of positive-/negative-definiteness, we conclude that f attains local minimum at $(0,0,0)$, and is of saddle-type at $(2,2,2),(-2,-2,2),(-2,2,-2)$, and $(2,-2,-2)$.

```
Each classification gets +2
```

9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{2}-y^{2}$, and S the unit circle in \mathbb{R}^{2}. Find the extrema of $\left.f\right|_{S}$ by using the bordered Hessian test. (No credit will be given if there is no use of bordered Hessian test.)

Solution. Let $g(x, y)=x^{2}+y^{2}$. Observe that $\nabla g\left(x_{0}, y_{0}\right) \neq \overrightarrow{0}$ for all $\left(x_{0}, y_{0}\right) \in S$. Hence by the Lagrange multiplier theorem, there exists $\lambda \in \mathbb{R}$ such that $\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)$ if $\left.f\right|_{S}$ attains a local extremum at $\left(x_{0}, y_{0}\right)$. That means the following system of equation is satisfied:

$$
\begin{aligned}
\left(2 x_{0},-2 y_{0}\right) & =\lambda\left(2 x_{0}, 2 y_{0}\right) \\
x_{0}^{2}+y_{0}^{2} & =1 .
\end{aligned}
$$

This gives $(\lambda, x, y)=(1, \pm 1,0)$ and $(-1,0, \pm 1)$.

Now form the auxilary function $h(x, y):=f(x, y)-\lambda(g(x, y)-1)$. Note that

$$
\begin{array}{ccc}
\frac{\partial^{2} h}{\partial \lambda^{2}}=0 & \frac{\partial^{2} h}{\partial x \partial \lambda}=-\frac{\partial g}{\partial x}=-2 x & \frac{\partial^{2} h}{\partial y \partial \lambda}=-\frac{\partial g}{\partial y}=-2 y \\
\frac{\partial^{2} h}{\partial \lambda \partial x}=-\frac{\partial g}{\partial x}=-2 x & \frac{\partial^{2} h}{\partial x^{2}}=2-2 \lambda & \frac{\partial^{2} h}{\partial y \partial x}=0 \\
\frac{\partial^{2} h}{\partial \lambda \partial y}=-\frac{\partial g}{\partial y}=-2 y & \frac{\partial^{2} h}{\partial x \partial y}=0 & \frac{\partial}{\partial y^{2}}=-2-2 \lambda
\end{array}
$$

So the bordered Hessian determinant $|\bar{H}|$ at $\left(x_{0}, y_{0}\right)$ is given by

$$
\left|\begin{array}{ccc}
0 & -2 x_{0} & -2 y_{0} \\
-2 x_{0} & 2-2 \lambda & 0 \\
-2 y_{0} & 0 & -2-2 \lambda
\end{array}\right|=4 x_{0}^{2}(2+2 \lambda)-4 y_{0}^{2}(2-2 \lambda)
$$

	(λ, x, y)	$\|\bar{H}\|$	Test
Therefore	$(1,1,0)$	16	Local maximum
	$(1,-1,0)$	16	Local maximum
	$(-1,0,1)$	-16	Local minimum
	$(-1,0,-1)$	-16	Local minimum

Each local extremum gets +2.5
10. Let $f(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}$. Find the absolute maximum and minimum values of f on the elliptical region $x^{2}+\frac{1}{2} y^{2} \leq 1$.
Solution. We calculate all critical points of f in the open set $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+\frac{1}{2} y^{2}<1\right\}$. From $f_{x}=x$ and $f_{y}=y$, the only critical point is $(x, y)=(0,0)$, and f attains the absolute minimum 0 at $(0,0)$. (Because f is defined by sum of two squares.)

Now let $g(x, y)=x^{2}+\frac{1}{2} y^{2}$. Observe that $\nabla g\left(x_{0}, y_{0}\right)$ is vanishing only at the origin which is not on the ellipse $S:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+\frac{1}{2} y^{2}=1\right\}$. By the Lagrange multiplier theorem, there exists $\lambda \in \mathbb{R}$ such that $\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)$ if $\left.f\right|_{S}$ attains a local extremum at $\left(x_{0}, y_{0}\right)$. That means the following system of equation is satisfied:

$$
\begin{aligned}
\left(x_{0}, y_{0}\right) & =\lambda\left(2 x_{0}, y_{0}\right) \\
x_{0}^{2}+\frac{1}{2} y_{0}^{2} & =1 .
\end{aligned}
$$

This gives $(\lambda, x, y)=(1,0, \pm \sqrt{2})$ and $\left(\frac{1}{2}, \pm 1,0\right)$. Clearly $\left.f\right|_{S}$ attains local maxima 1 at $(0, \pm \sqrt{2})$ and local minima $\frac{1}{2}$ at $(\pm 1,0)$. Therefore f has its absolute maximum 1 at $(0, \pm \sqrt{2})$.

Absolute maximum +5 , absolute minimum +5 .

