Solutions to take-home Midterm Exam
MATH 250 Section 02
From April 13th, 2016 7:25pm to April 20th, 2016 5:35pm.

1 a a
1. Prove the following result: | 1 b b | = (b—c)(c—a)(a—b)(a+b+c).
1 ¢ &

Solution. Expand the given determinant along the first column. We get

w

1a a b b a a3 a a
1 b | = c Al e & + b | = be® — b — (ac3 — ca3) + ab® — ba’.
1 ¢ &

By rearranging terms, we see the far RHS is equal to the following. Factor out (b — c).
be® — cb® + ab® — ac® — (ba® — ca®) = —be(b? — ) + a(b® +be+ ) (b—c) —a*(b—c)
=—(b— c)(a3 — (b% + be + H)a + be(b + ¢))=—=0b-c)a—b)(a—c)(a+b+c)
=(a—b)(b—c)(c—a)(a+b+c).

+5 for knowing determinant expansion.

2. Prove if the following statement is true, or disprove by giving an example if it is false:
Let f: A CR" — R be a function on A whose all first partial derivatives %,...,% erist at
7o € A. Then the function f is continuous at Ty € A.

Solution. False. Consider f :R? — R defined by

|1 ifz=00ry=0
f(x,y)—{ 0 ifx#A0andy=#0

This function has f;(0,0) and f,(0,0);
f(h70)_f(070) 11

T s :1 :1 _—
£o(0,0) = Jiy == i = =0

. f0,h)—f(0,0) .. 1-1
(0,0) = Jimy T2 = g = =0

However the function is not continuous at the origin. In the case (z,y) — (0,0) along z- or y-axes,
lim(x"y)ﬁ(op) f(z,y) =1 = £(0,0) whereas (x,y) — (0,0) along the diagonal path {(x,y) € R? : z =
y}, img ) (0,0) f(7,y) = 0 whereas f(0,0) = 1. O

+5 for giving a right example. +3 for verifying existence of partial derivatives, +2
for verifying discontinuity at :176 c€A.
1



3. Determine whether the following functions is differentiable:
flz,y) = z + Y if 2 and y both are nonzero and f(z,y) =0ifz =0 or y =0.
y T
Solution. This question is asking if the given function is differentiable at every (zg,%0) € R2.
Recall that

Proposition 1. If f is of class C! at (z0,y0) (i.e., f has all first partial derivatives at (zg, o) and
the partial derivatives are continuous at at (xg,yo)), then f is differentiable.

We claim that our f is of class C! at (w0, 30) with nonzero xq and yo, since it has partial derivatives

of 1 y
oy a?
. of = 1
oy  y: oz

and these are continuous functions at (xo, yo) if o and yo are nonzero. Therefore, by the Proposition
1, differentiability of f follows.
Now let g # 0 and yo = 0. We first calculate partial derivatives of f at (z9,0) if exists.

o _
@) 0x l(z0,00 h—0 h h—0 h
o Zo + h
of = lim f (@0, 0+ h) = f(x0,0) = lim 20 — Jim =2 4 L. : Does not exist.
Oy l(z0,0)  h—0 h h—0 h h—0 h2 o
By similar calculations we conclude that 8f ‘ does not exist and 8f ‘ — =0 if zg = 0 and
0,50) Y0)
yo # 0. In these two cases, since not all part1al derlvatives exist, f is not dlfferentiable.
Consider the case that zg = yg = 0. We have 2 % ©00) =0= %5 ©0) Now we check whether f

has a good approximation at (0,0). In other words, we check if the following equality holds:

|f(ha, ha) — £(0,0) = Vf(0,0) - (ha, ho)|

lim =0.
(h1,h2)—(0,0) [[(h1, ha)|l
We see that
hi | h hi+h3
S (2 R e N -5 7Y Mk
(h1,h2)—(0,0) 1(h1, ho)l (h1,h2)=(0.0) \/hF + h3  (h1h2)=>(0,0) /I + h3
We claim that the far RHS is not zero.
h2+h3 r2
i hihs 72 sin 6 cos 6 1
1m _ = ImM-———=1m|—
(h1,h2)=(0,0) \/hZ + h3 =0 r r—0 |7 sin 6 cos 0

which is not necessarily vanishing. Notice that we have used a substitution A1 = rcosf and hy =
rsinf in the first equality. Therefore, we conclude that f is not differentiable at (zg, o) if one of
coordinates is zero. O



Any correct proof that f is not differentiable everywhere on R? gets credit.

4. Find a unit vector normal to the surface S given by 23y +y — 2z =1 at o= (1,1,1).

Solution. The given surfact S is the level surface of g(z,vy,2) = 1 for g(z,y,2) := 3y3 +y — 2. The
gradient vector at @ is a vector that is normal to S, whereas Vg( 7o) = (322y°, 32332 +1, -1z, =
(3,4, —1). By normalizing, we get

V(o) _(3 4 —1)
IVg(Zo)l ~ \ V26" V26 v26)

-2 for not normalizing

5. Let f: R® — R be differentiable at 7y € R3. Prove that
i M) = £(@o)]
770 |7 — T

is bounded by a positive constant. (Hint: Use the triangle inequality and the Cauchy-Schwarz in-
equality)

Solution. Recall the following inequalities:

(3) |7 + || @] < ||V + W]  forany ¥, € R™
called the triangle inequality, and
(4) |7 - W] < || V)| for any U, W € R™

which is called the Cauchy-Schwarz inequality. Note that the following inequality is nothing but a
restatement of .

(5) 17| - || < ||V —W||  for any ¥, W € R™.
This is because |7 || = | ¥ — & + W]

Now we prove the given statement using the above inequalities. Recall that f is differentiable at
2 if partial derivatives f,, (70), - , fe, (o) exists and

ﬁ
lim [f(Fo+ 1) - f(zo) — V(o)
N | Al
Recall the € — ¢ definition of limit. (Section 2.2.) Having the above limit implies that there exists

— — . . -—>
some § > 0 such that 0 < || A || < § implies H(Fot 1) f”(%(i) VI hl gl <1, (Note: We chose

—
- h
’:0.

¢ = 1 which we can.)



Therefore we look at
%
. h’

F(Zo+ B) — F(To) - V(o)

e <1.
IRl

By , we observe that

F(Zo+ 1) = (@) = IVF(Zo) - B| _ [f(Zo+ ) — f(To) = VI (o) - |

= S = <1
(e (el
Hence
— —
F(Zo+ B) = F(Zo)l _y , [VI(@o)- 1]
= oy
(el (el
and notice that by ,
— —
V(@) h V(@]
7]l Al
where the far RHS is a constant that is positive. O

6. Let j be the coordinate change map from the spherical coordinate to the cartesian coordinate
defined by

T =rcosfsing
y = rsinfsin ¢

Z=17cos¢

Also let f : R? — R be a differentiable map. Calculate D(f o j).

Solution.
j:RY x (0,27) x (0,7) = R3
(T, 97 ¢) '_> (:L'? y’ Z)
and
% % 32 cosfsing —rsinfsing rcosfcosq
D(j)(r,0,¢) = % % gg (r,0,0) = | sinfsing rcosfsing rsinfcose
% % gé cos ¢ 0 —rsin¢g

By the chain rule,

cosfsing —rsinfsing rcostcoso
D(foj)(r,0,¢) = ( % % gJ; ) (z,y,2) siani;Mb rcosgsinqﬁ rsinﬁlcoqsﬁqb (r,0,9)
cos —rsin



Therefore

ofej) _ of .. Of of
o —cosesmqﬁ—ax—ksmﬂsmgb—ay +cos¢—az
ofej) . . Of . Of
0 rsmﬁsmqﬁax—l—rcosﬁsmqﬁay
foj) of . of . 0f
T rcosﬂcosqb—ax +Ts1necosq5—ay rsmqbaz

+5 for correct calculation of D(j).

7. Let f(z,y) = 2° + y* + 322 + 22y + 20 + 3% + 2y + 1. Find the second order Taylor ap-
proximation of f at (1,0).

Solution. Let @ = (z,y) and @ = (1,0). Recall that
J(@ = T0) = J(T0)+ VI (o) - (F = To) + (T = Zo) HI(To)(T = o) + BalTo, T — o).

Here (7 — 70)T denotes the transpose of the column vector 7 — ?0.
Since f, = 5a* + 6z +2y+2, f, = 4y° + 22+ 2y +2, frp = 2003 +6, fu, = 2, and f,, = 12y +2,
we have

F(7 = R0) =T+ (13.0) (- L)+ (o= 1) ()5 ) (0 L+ Aal(1,0), o~ L)

=74+13(z—1)+4y+13(z —1)> + (z — Dy + (x — )y + 4° + Ra((1,0), (z — 1, 1))
Therefore the second order Taylor approximation Py(z,y) of f is
Py(z,y) =7+ 13(x — 1) + 4y + 13(x — 1)® + 2(z — 1)y + 2y + y*

O

+5 for knowing Taylor approximation. Each incorrect term gets -1 for minor errors,
-3 if the order of the term is not correct.

8. For given f(z,y,2) = x? + y?> + 2% — xyz find all critical points and determine whether they
are local minima, local maxima, saddle points, or none of them.

Solution. Step 1: We find all critical points.
fr=2x—yz=0
fy=2y—22=0
f-=2z—2y=0
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By solving this system of equations, we get xyz = 0 or zyz = 8. In the case of the former, by using
each of the equations, we conclude x = y = z = 0, whereas in the case of the latter, we obtain
(1:, Y, Z) = (27 2, 2)? (_2’ -2, 2)7 (_23 2, _2)7 and (27 -2, _2)'

Step 2: We compute the Hessian matrix H f at each of the above points. Observe that

fa:a::+2 fya: = —z fza::_y
fmy:_z fyy =+2 fzy:—l'
Jor=—Y  fyz =—x  fo=42
So we get
2 00
Hf(0,0,00=|0 2 0|, Hi =2, Hy=4, H3=38
0 0 2
2 =2 =2
Hf222)=|-2 2 -2| H=2 Hy=0 H5=-32
-2 =2 2
2 =2 2
Hf(-2,-2,2)=| -2 2 2|, H =2, Hy=0, H3=-32
2 2 2
2 =2
Hf(-2,2,-2)=| 2 2 2 |, Hy =2, Hy=0, H3=-32
-2 2 2
2 2 2
Hf(2,-2,-2)=|2 2 —-2|, H; =2,  Hy=0, H3=-32
2 =2 2

By the determinant test of positive-/negative-definiteness, we conclude that f attains local minimum
at (0,0,0), and is of saddle-type at (2,2,2), (-2,-2,2), (—-2,2,—2), and (2, -2, —2). O

Each classification gets +2

9. Let f:R?> - R, (x,9) — 22 — %2, and S the unit circle in R?. Find the extrema of f|s by
using the bordered Hessian test. (No credit will be given if there is no use of bordered Hessian test.)

Solution. Let g(x,y) = x> + y?. Observe that Vg(zo,yo) # 6> for all (xg,y0) € S. Hence by the
Lagrange multiplier theorem, there exists A € R such that V f(xg,y0) = AVg(xo,yo) if f|s attains a
local extremum at (zg,yp). That means the following system of equation is satisfied:

(220, —2y0) = A(270,2y0)
oy + g = 1.

This gives (A, x,y) = (1,%£1,0) and (—1,0,+£1).



Now form the auxilary function h(z,y) := f(x,y) — AM(g(x,y) — 1). Note that

%h 9%h __ _dg __ 0%h . 0g __
, ava—o 6368)\2__890__2x Dyox _2_8y__2y
9%h 92h h
6A28x:_§g:_2x WQZQ_Q)‘ Qaé;/axzo
9?h _ _8g _ ?h _ 0°h _ _o9
o3y — oy — 2V dzoy — g7 = 2722

So the bordered Hessian determinant |H| at (zo,yo) is given by

0 —2{B0 —2y0
—2x5 2—2)\ 0 = 423(2 4 2)\) — 42 (2 — 2))
9y 0 —2-2)
\zy) | |H| | Test
(1,1,0) 16 | Local maximum
Therefore (1,-1,0) | 16 | Local maximum 0
(—1,0,1) | —16 | Local minimum

(—=1,0,—1) | =16 | Local minimum

Each local extremum gets +2.5

10. Let f(x,y) = %xQ
1
2

+ %yQ. Find the absolute maximum and minimum values of f on the el-
2
y° <1

liptical region 2 +

Solution. We calculate all critical points of f in the open set {(z,y) € R? : 22 + 1¢? < 1}. From
fz = x and f, =y, the only critical point is (z,y) = (0,0), and f attains the absolute minimum 0
at (0,0). (Because f is defined by sum of two squares.)

Now let g(z,y) = 2% + %yQ. Observe that Vg(zg,yo) is vanishing only at the origin which is not
on the ellipse S := {(z,y) € R? : 2% + %yQ = 1}. By the Lagrange multiplier theorem, there exists
A € R such that V f(zo,y0) = AVg(xo,yo) if f|s attains a local extremum at (zg,yo). That means
the following system of equation is satisfied:

(20,%0) = AM(220,%0)

1
2 2
SR =1
Lo T 5%
This gives (A, z,y) = (1,0,£v2) and (3, +1,0). Clearly f|s attains local maxima 1 at (0, +v/2) and
local minima 1 at (£1,0). Therefore f has its absolute maximum 1 at (0, £v/2). O

Absolute maximum +5, absolute minimum +5.



