Take-home Final Exam
 MATH 250 Section 02

From May 18th, 2016 7:25pm to May 25th, 2016 5:20pm.
 Deadline: May 25th, 2016 5:20pm.

Instructions: Policies of this exam are described on coversheet. You can keep this problem sheet. Please submit your solutions with the coversheet stapled on the top. Please note that late-submissions are NOT accepted.

1. Let $f(x, y)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{3} y^{3}-\frac{5}{2} y^{2}+6 y-9$. Find and classify all critical points of f.
2. Extremize $f(x, y, z)=x$ subject to the constraints $x^{2}+y^{2}+z^{2}=1$ and $x+y+z=1$.
3. Prove if the following statement is true, or disprove by giving an example if it is false:

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function on A whose all first partial derivatives $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}$ exist at $\vec{x}_{0} \in A$. Then the function f is differentiable at $\vec{x}_{0} \in A$.
4. Show that, at a local maximum or minimum of $\|\vec{r}(t)\|$, the vector $\vec{r}^{\prime}(t)$ is perpendicular to $\vec{r}(t)$.
5. State and prove Fubini's theorem for the case of continuous functions defined on a rectangle.
6. (1) Let

$$
f(m, n):=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \cos n x \sin m y d x d y
$$

Calculate $\lim _{m, n \rightarrow \infty} f(m, n)$.
(2) Let D be the region bounded by the positive x and y axes and the parabola $y=-x^{2}+1$. Compute

$$
\iint_{D}\left(x^{2}+x y-y^{2}\right) d A
$$

Please see overleaf

2
7. Sketch the region and compute

$$
\int_{0}^{4} \int_{y / 2}^{2} e^{x^{2}} d x d y
$$

8. Let $W:=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{1}{2} \leq z \leq 1\right.$ and $\left.x^{2}+y^{2}+z^{2} \leq 1\right\}$. Sketch the region and set up a triple integral representing the volume of W. (Do not calculate the integral.)
9. Let $a>0$. Show that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

and compute

$$
\int_{-\infty}^{\infty} e^{-a x^{2}} d x
$$

10. Find the moment of inertia around the y-axis for the ball $\mathbb{B}_{R}=\left\{(x, y, z) \in \mathbb{R}^{3}\right.$: $\left.x^{2}+y^{2}+z^{2} \leq R^{2}\right\}$ if the mass density is a constant μ.
