5. (1) Decide if each of the given functions is differentiable.

$$
f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}
$$

Solution. Let $\left(x_{0}, y_{0}\right) \neq(0,0)$. We prove that f is differentiable at $\left(x_{0}, y_{0}\right)$. The idea is using the following proposition (you can use it without giving a proof).

Proposition 1. If f is of class C^{1} at $\left(x_{0}, y_{0}\right)$ (i.e., f has all first partial derivatives at $\left(x_{0}, y_{0}\right)$ and the partial derivatives are continuous at at $\left.\left(x_{0}, y_{0}\right)\right)$, then f is differentiable.

We claim that our f is of class C^{1} at $\left(x_{0}, y_{0}\right) \neq(0,0)$, since it has partial derivatives

$$
\begin{align*}
& \frac{\partial f}{\partial x}=\frac{y \sqrt{x^{2}+y^{2}}-x y \frac{2 x}{2 \sqrt{x^{2}+y^{2}}}}{x^{2}+y^{2}}=\frac{x^{2} y+y^{3}-x^{2} y}{\left(x^{2}+y^{2}\right)^{3 / 2}} \\
& \frac{\partial f}{\partial y}=\frac{x \sqrt{x^{2}+y^{2}}-x y \frac{2 y}{2 \sqrt{x^{2}+y^{2}}}}{x^{2}+y^{2}}=\frac{x y^{2}+x^{3}-x y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} \tag{1}
\end{align*}
$$

and these are continuous functions at $\left(x_{0}, y_{0}\right) \neq(0,0)$. Therefore, by the Proposition 1, differentiability of f follows.

Now we consider the case when $\left(x_{0}, y_{0}\right)=(0,0)$. Since the function is not defined at $(0,0)$, f is not differentiable at that point. (Notice that to even discuss differentiability of f at $(0,0)$ we should know $f((0,0))$ to verify the definition.)

Remark. The above problem becomes more interesting if we change the problem as follows.

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }\left(x_{0}, y_{0}\right) \neq(0,0) \\
0 & \text { if }\left(x_{0}, y_{0}\right)=(0,0)
\end{array}\right.
$$

Solution. In the case $\left(x_{0}, y_{0}\right) \neq(0,0)$, the first two paragraphs of the above solution identically becomes a solution.

Now let $\left(x_{0}, y_{0}\right)=(0,0)$. We first calculate partial derivatives of f at $(0,0)$ if exists. (Notice that you cannot plug in $(0,0)$ to the equation (1), and you have to go to the definition of the partial differentiation.)

$$
\begin{align*}
& \left.\frac{\partial f}{\partial x}\right|_{(0,0)}=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 \tag{2}\\
& \left.\frac{\partial f}{\partial y}\right|_{(0,0)}=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0
\end{align*}
$$

Now we check f has a good approximation at $(0,0)$. In other words, we check if the following equality holds:

$$
\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|f\left((0,0)+\left(h_{1}, h_{2}\right)\right)-f((0,0))-\nabla f((0,0)) \cdot\left(h_{1}, h_{2}\right)\right|}{\left\|\left(h_{1}, h_{2}\right)\right\|}=0 .
$$

We see that

$$
\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|f\left(\left(h_{1}, h_{2}\right)\right)-0-0\right|}{\left\|\left(h_{1}, h_{2}\right)\right\|}=\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|\frac{h_{1} h_{2}}{\sqrt{h_{1}^{2}+h_{2}{ }^{2}}}\right|}{\sqrt{h_{1}^{2}+h_{2}^{2}}}=\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{h_{1} h_{2}}{h_{1}^{2}+h_{2}^{2}} .
$$

We claim that the far RHS is not zero, because if we let $h_{1}=r \cos \theta$ and $h_{2}=r \sin \theta$, it becomes $\lim _{r \rightarrow 0} \frac{|r \cos \theta r \sin \theta|}{r^{2}}=\left|\frac{1}{2} \sin 2 \theta\right|$. It means as long as we approach to the origin any straight line that is not the coordinate axis, the limit is non-zero, whereas it is zero when we approach along one of the coordinate axis. Therefore, we conclude that f is not differentiable at $(0,0)$.

Remark (Not a part of the solution): Notice that partial derivatives f_{x} and f_{y} at $(0,0)$ are not continuous: In equation (1), $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}$ and $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial y}$ do not exist. (Approaching along x-axis and y-axis yield different values.) So limits do not exist, and hence cannot be continuous. This means we cannot apply Proposition 1 and have to proceed as above.

A sketch of solution for Problem 5. (2): We are given the following function.

$$
f(x, y)=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

This function is differentiable at all $\left(x_{0}, y_{0}\right) \neq(0,0)$ by an argument similar to Problem 5. (1), and is not defined (and hence not differentiable) at (0,0).

Now consider the following variant of this problem:

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }\left(x_{0}, y_{0}\right) \neq(0,0) \\
0 & \text { if }\left(x_{0}, y_{0}\right)=(0,0)
\end{array}\right.
$$

I claim that the function is not differentiable at $(0,0)$. The function has partial derivatives at $(0,0)$ as $\left.\frac{\partial f}{\partial x}\right|_{(0,0)}=0$ and $\left.\frac{\partial f}{\partial y}\right|_{(0,0)}=0$. (You check these yourself if not convincing.) We now
compute the following limit:

$$
\begin{aligned}
& \lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|f\left((0,0)+\left(h_{1}, h_{2}\right)\right)-f((0,0))-\nabla f((0,0)) \cdot\left(h_{1}, h_{2}\right)\right|}{\left\|\left(h_{1}, h_{2}\right)\right\|}=\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|\frac{2 h_{1} h_{2}}{\left(h_{1}^{2}+h_{2}^{2}\right)^{2}}\right|}{\left(h_{1}^{2}+h_{2}^{2}\right)^{1 / 2}} \\
= & \lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|2 h_{1} h_{2}\right|}{\left(h_{1}^{2}+h_{2}^{2}\right)^{5 / 2}} .
\end{aligned}
$$

We let $h_{1}=r \cos \theta$ and $h_{2}=r \sin \theta$. Then the far RHS becomes

$$
\lim _{r \rightarrow 0} \frac{|\sin 2 \theta|}{r^{3}} .
$$

This limit certainly is not 0 .

