9. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable at $\vec{x}_{0} \in \mathbb{R}^{3}$. Prove that

$$
\frac{\left|f(\vec{x})-f\left(\vec{x}_{0}\right)\right|}{\left\|\vec{x}-\vec{x}_{0}\right\|}
$$

is bounded by a positive constant. (Hint: Use the triangle inequality and the Cauchy-Schwarz inequality)

Solution. Recall the following inequalities:

$$
\begin{equation*}
\|\vec{v}\|+\|\vec{w}\| \leq\|\vec{v}+\vec{w}\| \quad \text { for any } \vec{v}, \vec{w} \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

called the triangle inequality, and

$$
\begin{equation*}
|\vec{v} \cdot \vec{w}| \leq\|\vec{v}\|\|\vec{w}\| \quad \text { for any } \vec{v}, \vec{w} \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

which is called the Cauchy-Schwarz inequality. Note that the following inequality is nothing but a restatement of (1).

$$
\begin{equation*}
\|\vec{v}\|-\|\vec{w}\| \leq\|\vec{v}-\vec{w}\| \quad \text { for any } \vec{v}, \vec{w} \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

This is because $\|\vec{v}\|=\|\vec{v}-\vec{w}+\vec{w}\|$.
Now we prove the given statement using the above inequalities. Recall that f is differentiable at \vec{x}_{0} if partial derivatives $f_{x_{1}}\left(\vec{x}_{0}\right), \cdots, f_{x_{n}}\left(\vec{x}_{0}\right)$ exists and

$$
\lim _{\vec{h} \rightarrow \overrightarrow{0}} \frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right)-\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h} \mid\right.}{\|\vec{h}\|}=0
$$

Recall the $\epsilon-\delta$ definition of limit. (Section 2.2.) Having the above limit implies that there exists some $\delta>0$ such that $0<\|\vec{h}\|<\delta$ implies $\left|\frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right)-\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h} \mid\right.}{\|\vec{h}\|}-0\right|<1$. (Note: We chose $\varepsilon=1$ which we can.)

Therefore we look at

$$
\frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right)-\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h} \mid\right.}{\|\vec{h}\|}<1
$$

By (3), we observe that

$$
\frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right)\left|-\left|\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h}\right|\right.\right.}{\|\vec{h}\|} \leq \frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right)-\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h} \mid\right.}{\|\vec{h}\|}<1
$$

Hence

$$
\frac{\mid f\left(\left(\vec{x}_{0}+\vec{h}\right)-f\left(\vec{x}_{0}\right) \mid\right.}{\|\vec{h}\|}<1+\frac{\left|\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h}\right|}{\|\vec{h}\|}
$$

and notice that by (2),

$$
1+\frac{\left|\nabla f\left(\vec{x}_{0}\right) \cdot \vec{h}\right|}{\|\vec{h}\|} \leq 1+\frac{\left\|\nabla f\left(\vec{x}_{0}\right)\right\|\|\vec{h}\|}{\|\vec{h}\|}=1+\left\|\nabla f\left(\vec{x}_{0}\right)\right\|
$$

where the far RHS is a constant that is positive.

