Corrigendum to Review Problems for Chapters 1 and 2 Spring 2016 MATH 250 Section 02

Acknowledgement. Many thanks to Dariusz for pointing out errors.

The handout states:

6. (1) Prove if the following statement is true, or disprove by giving an example if it is false:

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function on A whose all first partial derivatives $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}$ exist at $\vec{x}_{0} \in A$. Then the function f is differentiable at $\vec{x}_{0} \in A$.

It should be read:

6. (1) Prove if the following statement is true, or disprove by giving an example if it is false:

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function on A whose all first partial derivatives $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}$ exist at $\vec{x}_{0} \in A$. Then the function f is differentiable at $\vec{x}_{0} \in A$.

Note: The conclusion is about the differentiability at a vector $\vec{x}_{0} \in A$, not the entire domain.
The handout states:
6. (3) Prove if the following statement is true, or disprove by giving an example if it is false:

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function on A whose all first partial derivatives $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}$ exist at $\vec{x}_{0} \in A$. Then the function f is continuous.

It should be read:
6. (3) Prove if the following statement is true, or disprove by giving an example if it is false:

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function on A whose all first partial derivatives $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}$ exist at $\vec{x}_{0} \in A$. Then the function f is continuous at $\vec{x}_{0} \in A$.

Note: The conclusion is about the continuity at a vector $\vec{x}_{0} \in A$, not the entire domain.
The handout states:
9 . Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable at $\vec{x}_{0} \in \mathbb{R}^{3}$. Prove that

$$
\frac{\left|f(\vec{x})-f\left(\vec{x}_{0}\right)\right|}{\left\|\vec{x}-\vec{x}_{0}\right\|}
$$

is bounded by a positive constant. (Hint: Use the triangle inequality and the Cauchy-Schwarz inequality)

It should be read:

9. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable at $\vec{x}_{0} \in \mathbb{R}^{3}$. Prove that

$$
\lim _{\vec{x} \rightarrow \vec{x}_{0}} \frac{\left|f(\vec{x})-f\left(\vec{x}_{0}\right)\right|}{\left\|\vec{x}-\vec{x}_{0}\right\|}
$$

is bounded by a positive constant. (Hint: Use the triangle inequality and the Cauchy-Schwarz inequality)

Note: Without the limit as \vec{x} goes \vec{x}_{0}, the statement makes sense, but that is a false statement. In fact there is reason that the quotient is bounded by a constant. Actually one can cook up a
counterexample easily: Let

$$
f(x, y, z):=z \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}=z\left\|\vec{x}-\vec{x}_{0}\right\|
$$

Notice that

$$
\left|f(\vec{x})-f\left(\vec{x}_{0}\right)\right|=z\left\|\vec{x}-\vec{x}_{0}\right\|
$$

and hence

$$
\frac{\left|f(\vec{x})-f\left(\vec{x}_{0}\right)\right|}{\left\|\vec{x}-\vec{x}_{0}\right\|}=z
$$

Clearly this quotient is not bounded.

