Review Problems - Chapter 3 Spring 2016 MATH 250 Section 02

Review Problems

1. (1) Prove or disprove the following statement: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be any map. Then

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} .
$$

(2) Prove or disprove the following statement: Every critical point is a local extremum.
2. Let $f(x, y)=x^{4}+x^{3}+y^{2}+y+x y+3$. Find the second order Taylor approximation of f at $(1,2)$.
3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a quadratic form. Construct a symmetric bilinear form using the quadratic form f. (Recall that a symmetric bilinear form is a map $g: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

- $g(\vec{v}, \vec{w})=g(\vec{w}, \vec{v})$ for every $\vec{v}, \vec{w} \in \mathbb{R}^{n}$.
- $g\left(a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}, \vec{w}\right)$ for every $\vec{v}_{1}, \vec{v}_{2}, \vec{w} \in \mathbb{R}^{n}$ and $a_{1}, a_{2} \in \mathbb{R}$.
holds.) Note: You should check what you constructed is actually satisfying the definition of a symmetric bilinear form.

4. Classify all critical points of $f(x, y)=x^{2}-3 x y+5 x-2 y+6 y^{2}+8$.
5. For given $f(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y z$ find all critical points and determine whether they are local minima, local maxima, saddle points, or none of them. (Hint: Use determinant test for positive definiteness in p .175 .)
6. The proof of Theorem 8 in p. 186 of the textbook has a gap; i.e., the proof is incomplete. (1) Explain what is wrong in the proof. (2) Provide a complete the proof. (Hint: See p.206. You can use the implicit function theorem without proof.)
7. Find the absolute maximum and minimum values of $f(x, y)=x^{2}+y^{2}-x-y+1$ on the unit disc $\mathbb{D}^{2}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.
8. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{2}+x y+y^{2}$, and S the unit circle in \mathbb{R}^{2}. Find the extrema of $\left.f\right|_{S}$ by using the bordered Hessian test. (No credit will be given if there is no use of bordered Hessian test.)
9. Find the extrema of $f(x, y, z)=x+y+z$ subject to $x^{2}-y^{2}=1$ and $2 x+z=1$.

If you need any help, please feel free to send an email (or multiple emails) to byungdpark@gmail.com.

