Exam II
 Spring 2017 MATH 15500 Section 06
 April 4th, 2017. 09:00-11:00

Your name:

Instructions: Please clearly write your name above. This exam is closed-book and closed-note. You cannot use any electronic device in this exam. You are not allowed to talk to other students. Write all details explicitly. Answers without justifications and/or calculation steps may receive no score.

Total 100 points. 10 points each unless specified otherwise.

1. Calculate the following integral:

$$
\int \sec ^{3} \theta d \theta
$$

Hint: You may use $\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C$.

2
2. Calculate the following integral:

$$
\int \cos ^{2} x \sin ^{2} x d x
$$

3. Prove that the area of an ellipse, whose equation is given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, is $a b \pi$.

4
4. Calculate

$$
\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x .
$$

Hint: You may use $\sin 2 x=2 \sin x \cos x$.
5. Calculate

$$
\int \frac{d x}{x^{2}-3 x-4}
$$

6. (5 points each) Let $f(x)=\frac{1}{x^{p}}$, where $0<p<\infty$. Discuss the convergence of the definite integral $\int_{1}^{\infty} f(x) d x$ in the following cases:
(1) When $0<p<1$:
(2) When $p=1$:
(3) When $p>1$:
7. Find the constant k that satisfies the following equation:

$$
\int_{-\infty}^{\infty} \frac{k}{4+x^{2}} d x=1
$$

8. Find the value that the following infinite sum converges to:

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}
$$

9. Show that the following sequence converges and find the limit.

$$
a_{n}=\frac{(-1)^{n}}{n!} .
$$

Here $n!:=n \cdot(n-1) \cdots \cdots 3 \cdot 2 \cdot 1$.

10 (5 points). Evaluate the following geometric series:

$$
1+\frac{e}{\pi}+\frac{e^{2}}{\pi^{2}}+\ldots+\frac{e^{n}}{\pi^{n}}+\ldots
$$

Please use this space if you need more space.

