Final Examination
Spring 2017 MATH 15500 Section 06
May 19th, 2017. 09:00-11:00

Your name:

Instructions: Please clearly write your name above. This exam is closed-book and closed-note. You cannot use any electronic device in this exam. You are not allowed to talk to other students. Write all details explicitly. Answers without justifications and/or calculation steps may receive no score.

Total 100 points. 10 points each unless specified otherwise.

1. (8 points) The graph of $f(x)=2 \sqrt{x}$ on the interval $[1,3]$ is revolved about the x-axis. What is the area of surface generated?
2. Let R be the region bounded by $y=\ln x$, the x-axis, and the line $x=e$. Find the volume of the solid generated when the region R is revolved about the x-axis.
3. (5 points each) Evaluate or show divergence:
(1)

$$
\int_{-\infty}^{\infty} \frac{1}{x^{2}+9} d x
$$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{2 x}}{e^{2 x}+1} d x \tag{2}
\end{equation*}
$$

4. (3 points each) Compute the limit of the sequence or show divergence:
(1)

$$
\lim _{k \rightarrow \infty} \frac{e^{k}}{k^{2}}
$$

(2)

$$
\lim _{n \rightarrow \infty} \frac{2 \sin n^{2}}{n^{3}}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left(\frac{3}{2}\right)^{k} . \tag{3}
\end{equation*}
$$

5. Given an infinite series

$$
\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}
$$

show that the series is divergent using indicated methods:
(1) (3 points) The comparison test. (You can use $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is divergent without proof.)
(2) (7 points) The integral test.
6. Determine whether the following series converges:

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}} .
$$

7. Show that the following series is absolutely convergent, convergent, or divergent:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}
$$

8. Write down the degree 4 Taylor polynomial centered at 0 :

$$
p_{4}(x)=\sum_{k=0}^{4} \frac{f^{(k)}(0)}{k!} x^{k}
$$

for $f(x)=1+e^{-x}$.

8
9. Find the interval of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{\sqrt{n}}
$$

(Verify and clearly mention whether your final answer is a(n) open, half-open, or closed interval!)

10. (1) (3 points) Let C be a circle of radius 2 centered at $(0,2)$. Write the equation of C in the polar coodinate.
(2) (10 points) Calculate the enclosed area by the limaçon $r=2+\cos \theta$ depicted as above.

Please use this space if you need more space.

