Exam II
 MATH 155 Section 08
 November 5th, 2015. 7:35PM-9:25PM

Your name:

Instructions: Please clearly write your name above. This exam is closed-book and closed-note. You cannot use any electronic device in this exam. You are not allowed to talk to other students. Write all details explicitly. Answers without justifications and/or calculation steps may receive no score. Hand-in this exam sheets and other sheets which contain your work to be graded.

Total 100 points. 10 points each unless specified otherwise.

1. Evaluate the following integral:

$$
\int \cos ^{3} x d x
$$

2. Prove that the area of an ellipse, whose equation is given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, is $a b \pi$.
3. Evaluate

$$
\int \frac{d x}{\left(1+x^{2}\right)^{2}}
$$

4. Evaluate

$$
\int \frac{d x}{x^{2}-5 x+6}
$$

5. Find the constant k that satisfies the following equation:

$$
\int_{-\infty}^{\infty} \frac{k}{1+4 x^{2}} d x=1
$$

6. (5 points each) Let $f(x)=\frac{1}{x^{p}}$, where $0<p<\infty$. Discuss the convergence of the definite integral $\int_{1}^{\infty} f(x) d x$ in the following cases:
(1) When $0<p<1$:
(2) When $p=1$:
(3) When $p>1$:
7. Find the value that the following infinite sum converges to:

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+1)} .
$$

8. Find the limit of the sequence:

$$
a_{n}=\frac{\sin n}{n^{2}+1} .
$$

9. Evaluate the following geometric series: $1+\frac{1}{\pi}+\frac{1}{\pi^{2}}+\ldots+\frac{1}{\pi^{n}}+\ldots$
10. (5 points) Evaluate $\int \ln x d x$. (Hint: Integration by parts.)
