Review Problems for Final Exam
 MATH 155 Section 06
 Exam Date and Time: May 19th, 2017. 09:00-11:00

Review Problems

1. (8 points) The graph of $f(x)=\sqrt{4 x+6}$ on the interval $[0,5]$ is revolved about the x-axis. What is the area of surface generated?
2. Let R be the region bounded by $y=x e^{x}$, the x-axis, the line $x=0$ and the line $x=\ln 2$. Find the area of R.
3. (5 points each) Evaluate or show divergence: (1) $\int_{-\infty}^{\infty} \frac{1}{x^{2}+4} d x$ (2) $\int_{1}^{\infty} \frac{3 x^{2}+1}{x^{3}+x} d x$.
4. (3 points each) Compute the limit of the sequence or show divergence:
(1) $\lim _{k \rightarrow \infty} \frac{e^{k}}{k}$. (2) $\lim _{n \rightarrow \infty} \frac{\sin (2 n)}{n^{2}}$. (3) $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{e^{k}}$.
5. Given an infinite series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}
$$

show that the series is convergent using indicated methods: (1) (3 points) The comparison test. (You can use $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent without proof.) (2) (7 points) The integral test. (You should compute a finite integral you need for comparison.)
6. Determine whether the following series converges: $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$.
7. Show that the following series is absolutely convergent, convergent, or divergent: $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\sqrt{n-1}}$.
8. Write down the degree 4 Taylor polynomial centered at 0 :

$$
p_{4}(x)=\sum_{k=0}^{4} \frac{f^{(k)}(0)}{k!} x^{k}
$$

for $f(x)=1+\cos x$.
9. Find the interval of convergence of the power series:

$$
\sum_{n=2}^{\infty} \frac{5(x-2)^{n}}{n-1}
$$

(Verify and clearly mention whether your final answer is a(n) open, half-open, or closed interval!)
10. (1) (3 points) Let C be a circle of radius 2 centered at $(2,0)$. Write the equation of C in the polar coodinate.

2

(2) (10 points) Calculate the enclosed area by the cardioid $r=4+4 \sin \theta$ depicted as above.

