Final Examination
 MATH 25500 Section 01
 19th May 2017, 14:10-15:25

Your name:

Instructions: Please clearly write your name above. This exam is closed-book and closednotes. You cannot use any electronic device in this exam. You are not allowed to talk to other students. Please write all details explicitly. Answers without justifications and/or calculation steps may receive no score. 10 points each unless stated otherwise.

1. (5 points) Evaluate the integral

$$
\int_{C}\left(7 x^{3} \cos x-2 y^{3}\right) d x+\left(2 x^{3}+y^{3} e^{-y}\right) d y
$$

where C is the unit circle in \mathbb{R}^{2}.
2. Use Green's theorem to calculate the area of the ellipse defined by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
3.(5 points) Compute the line integral

$$
\int_{C} x^{2017} d x+y^{2017} d y
$$

along the unit circle C in \mathbb{R}^{2}.
4. If C is a closed curve that is the boundary of a surface S, and f and g are C^{2} functions, show that

$$
\int_{C}(f \nabla g+g \nabla f) \cdot d \vec{r}=0
$$

5. Suppose a C^{1}-vector field \vec{F} is defined on any region D in \mathbb{R}^{2} that Green's theorem applies. Give an example of a vector field \vec{F}, a region D, and a curve C in D such that $\int_{C} \vec{F} \cdot d \vec{r}$ is nonvanishing.
6. Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=3 x y^{2} \vec{i}+3 x^{2} y \vec{j}+z^{3} \vec{k}$ and S is the surface of the unit sphere in \mathbb{R}^{3}.
7. Suppose an electric charge Q is placed at $(0,0,0)$. At $\vec{r}=(x, y, z)$, the electric field \vec{E} is given by

$$
\vec{E}(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{\|r\|^{3}} \vec{r}
$$

Calculate $\iint_{S} \vec{E} \cdot d \vec{S}$, where S is the unit sphere. If necessary, you can use one of Maxwell's equations $\nabla \cdot \vec{E}=\frac{\rho}{\epsilon_{0}}$, where ρ is the electric charge density function and ϵ_{0} is a constant.
8. Let φ, ψ, and θ be the following differential forms in \mathbb{R}^{3}.

$$
\begin{aligned}
\varphi & =x d x-y d y \\
\psi & =z d x \wedge d y+x d y \wedge d z \\
\theta & =z d y
\end{aligned}
$$

Compute $\varphi \wedge \psi$ and $d \psi$.
9. (10 points each) (1) Let ξ be a differential 1-form satisfying the differential equation $d \xi=0$. The operator $d_{\xi}(-):=d(-)+\xi \wedge(-)$ acts on an arbitrary differential form ω by $\omega \mapsto d \omega+\xi \wedge \omega$. Show that $d_{\xi}^{2}=0$.
(2) Let d_{ξ} be as above. Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a differentiable map. Show that $f^{*} \circ d_{\xi}=d_{f^{*} \xi} \circ f^{*}$.

Such a "twisted" de Rham complex defines a bigraded "twisted" de Rham cohomology called the Morse-Novikov cohomology.
10. Given a k-form ω in \mathbb{R}^{n} we will define an $(n-k)$-form $* \omega$ by setting

$$
*\left(d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}\right)=(-1)^{\sigma}\left(d x_{j_{1}} \wedge \cdots \wedge d x_{j_{n-k}}\right)
$$

and extending it linearly, where $i_{1}<\cdots<i_{k}, j_{1}<\cdots<j_{n-k},\left(i_{1}, \cdots, i_{k}, j_{1}, \cdots, j_{n-k}\right)$ is a permutation of $(1,2, \cdots, n)$ and σ is 0 or 1 according to the permutation is even or odd, respectively. Show that:

$$
* * \omega=(-1)^{k(n-k)} \omega .
$$

Please use this space if you need more space.

