Final Examination MATH 25500 Section 01 19th May 2017, 14:10–15:25

Your name:

Instructions: Please clearly write your name above. This exam is closed-book and closednotes. You cannot use any electronic device in this exam. You are not allowed to talk to other students. Please write all details explicitly. Answers without justifications and/or calculation steps may receive no score. 10 points each unless stated otherwise.

1. (5 points) Evaluate the integral

$$\int_C (7x^3 \cos x - 2y^3) dx + (2x^3 + y^3 e^{-y}) dy$$

where C is the unit circle in \mathbb{R}^2 .

2

2. Use Green's theorem to calculate the area of the ellipse defined by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

3.(5 points) Compute the line integral

$$\int_C x^{2017} dx + y^{2017} dy$$

along the unit circle C in \mathbb{R}^2 .

4. If C is a closed curve that is the boundary of a surface S, and f and g are C^2 functions, show that

$$\int_C (f\nabla g + g\nabla f) \cdot d\overrightarrow{r} = 0.$$

5. Suppose a C^1 -vector field \overrightarrow{F} is defined on any region D in \mathbb{R}^2 that Green's theorem applies. Give an example of a vector field \overrightarrow{F} , a region D, and a curve C in D such that $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ is nonvanishing.

6. Evaluate $\iint_S \overrightarrow{F} \cdot d\overrightarrow{S}$, where $\overrightarrow{F} = 3xy^2 \overrightarrow{i} + 3x^2y \overrightarrow{j} + z^3 \overrightarrow{k}$ and S is the surface of the unit sphere in \mathbb{R}^3 .

7. Suppose an electric charge Q is placed at (0,0,0). At $\overrightarrow{r} = (x,y,z)$, the electric field \overrightarrow{E} is given by

$$\overrightarrow{E}(\overrightarrow{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{\|r\|^3} \overrightarrow{r}.$$

Calculate $\iint_S \vec{E} \cdot d\vec{S}$, where S is the unit sphere. If necessary, you can use one of Maxwell's equations $\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$, where ρ is the electric charge density function and ϵ_0 is a constant.

8. Let φ , ψ , and θ be the following differential forms in \mathbb{R}^3 .

$$\begin{split} \varphi &= xdx - ydy \\ \psi &= zdx \wedge dy + xdy \wedge dz \\ \theta &= zdy. \end{split}$$

Compute $\varphi \wedge \psi$ and $d\psi$.

9. (10 points each) (1) Let ξ be a differential 1-form satisfying the differential equation $d\xi = 0$. The operator $d_{\xi}(-) := d(-) + \xi \wedge (-)$ acts on an arbitrary differential form ω by $\omega \mapsto d\omega + \xi \wedge \omega$. Show that $d_{\xi}^2 = 0$.

(2) Let d_{ξ} be as above. Suppose $f : \mathbb{R}^m \to \mathbb{R}^n$ be a differentiable map. Show that $f^* \circ d_{\xi} = d_{f^*\xi} \circ f^*$.

Such a "twisted" de Rham complex defines a bigraded "twisted" de Rham cohomology called the *Morse-Novikov cohomology*.

10. Given a $k\text{-form }\omega$ in \mathbb{R}^n we will define an $(n-k)\text{-form }\ast\omega$ by setting

$$*(dx_{i_1} \wedge \dots \wedge dx_{i_k}) = (-1)^{\sigma}(dx_{j_1} \wedge \dots \wedge dx_{j_{n-k}})$$

and extending it linearly, where $i_1 < \cdots < i_k$, $j_1 < \cdots < j_{n-k}$, $(i_1, \cdots, i_k, j_1, \cdots, j_{n-k})$ is a permutation of $(1, 2, \cdots, n)$ and σ is 0 or 1 according to the permutation is even or odd, respectively. Show that:

$$**\omega = (-1)^{k(n-k)}\omega.$$

Please use this space if you need more space.