Homework 11 MATH 25500 Section 01 Due: 12th May 2017

You can look up any textbook on linear algebra or wikipedia pages. A good reference: Serge Lang, *Linear Algebra*, 3rd edition, Springer-Verlag New York.

1. Give a definition of a vector space over \mathbb{R} . (In other words a \mathbb{R} -vector space.)

2. Give an example of a vector space over \mathbb{R} .

3. Give a definition of a scalar product on a vector space V over \mathbb{R} . In other words, give a definition of a symmetric bilinear form on V over \mathbb{R} .

4. Give an example of a scalar product on a vector space V over \mathbb{R} .

5. Give a definition of a linear map from a \mathbb{R} -vector space V to a \mathbb{R} -vector space W.

6. Consider a set V^* defined by

 $\{\varphi \in V^* | \varphi : V \to \mathbb{R} \text{ is a linear map} \}.$

Give a canonical \mathbb{R} -vector space structure on V^* and verify that, with the vector space structure you have given, V^* is a \mathbb{R} -vector space.