Midterm Exam Review Sheet
 MATH 25500 Section 01

Exam date and time: 24th March 2017, 14:10-15:25

Instructions: In the exam, you may use your textbook or notes, but not any electronic device. Talking to other students will not be allowed. Answers without justifications and/or calculation steps may receive no score. 10 points each unless stated otherwise.

1. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a C^{1}-function and \vec{F} a C^{1}-vector field on \mathbb{R}^{3}. Show that $\nabla \times(f \vec{F})=$ $f \nabla \times \vec{F}+\nabla f \times \vec{F}$.

From here to the $\# 8$ of this exam, $\vec{F}(x, y, z)=\left(x, y, z^{2}\right)$ is a vector field on \mathbb{R}^{3}.
2. Find $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$.
3. Let $\alpha(t)=(\cos t, \sin t, t)$ be a curve in \mathbb{R}^{3} defined on $[0,2 \pi]$. Calculate $\int_{\alpha} \vec{F} \cdot d \vec{r}$.

From here to the end of this exam, $\Phi: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
(u, v) \mapsto(\cos u, \sin u, v)
$$

is a parametrization of a surface S, where $D=[0,2 \pi] \times[0,1]$.
4. Find all points $(u, v) \in D$ such that the surface S is regular at $\Phi(u, v)$.
5. Find the area of S by using the surface integral.
6. Evaluate $\iint_{S} z^{2} d S$.
7. Compute the surface integral $\iint_{S} \vec{F} \cdot d \vec{S}$.
8. (20 points) Calculate the Gauss curvature and the mean curvature at each point $p \in S$.
9. The temperature distribution in \mathbb{R}^{3} is given by $T(x, y, z)=3 x^{2}+3 z^{2}$. Compute the heat flux across the surface $x^{2}+z^{2}=2$ and $0 \leq y \leq 2$. Here the heat flux \vec{F} is defined by $\vec{F}:=-\nabla T$.

