Final Exam Review Sheet (May 12th Updated Version) MATH 25500 Section 01 Exam date and time: 19th May 2017, 14:10–15:25

Instructions: This exam is closed-book and closed-notes. Electronic devices are also not permitted to use. Talking to other students will not be allowed. Answers without justifications and/or calculation steps may receive no score.

1. Evaluate the integral

$$\int_C (2x^3 - y^3)dx + (x^3 + y^3)dy$$

where C is the unit circle in \mathbb{R}^2 .

2. Use Green's theorem to calculate the area of the circle with radius R centered at (0,0) in \mathbb{R}^2 .

3. Compute the line integral

$$\int_C x^3 dx - y^3 dy$$

along the unit circle C in \mathbb{R}^2 .

4. If C is a closed curve that is the boundary of a surface S, and f and g are C^2 functions, show that

$$\int_C f \nabla g \cdot d \overrightarrow{r} = \iint_S (\nabla f \times \nabla g) \cdot d \overrightarrow{S}.$$

5. Prove or disprove the following statement: If a C^1 -vector field \overrightarrow{F} is defined on any convex region D in \mathbb{R}^2 satisfying that $\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = 0$ for any loop C in D, then there exists a function f defined on D satisfying that $\overrightarrow{F} = \nabla f$.

6. Evaluate $\iint_S \overrightarrow{F} \cdot d\overrightarrow{S}$, where $\overrightarrow{F} = x^3 \overrightarrow{i} + y^3 \overrightarrow{j} + z^3 \overrightarrow{k}$ and S is the surface of the unit sphere in \mathbb{R}^3 .

7. Calculate $\iint_S \frac{\overrightarrow{r}}{r^3} \cdot d\overrightarrow{S}$ in the case that S is the boundary of a subset V in \mathbb{R}^3 that the Gauss' divergence theorem applies, and (0,0,0) is contained in \mathbb{R}^3 . Here $\overrightarrow{r} := (x, y, z)$.

8. Let $\omega = yzdx + zxdy + xydz$. Compute $d\omega$.

9. (1) Let $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ be a differentiable map. Assume that m < n and let ω be a k-form in \mathbb{R}^n , with k > m. Show that $f^* \omega = 0$.

(2) Let ω be a differential k-form with k an odd positive integer. Prove that $\omega \wedge \omega = 0$.

10. Given a k-form ω in \mathbb{R}^n we will define an (n-k)-form $*\omega$ by setting

$$*(dx_{i_1} \wedge \dots \wedge dx_{i_k}) = (-1)^{\sigma}(dx_{j_1} \wedge \dots \wedge dx_{j_{n-k}})$$

and extending it linearly, where $i_1 < \cdots < i_k$, $j_1 < \cdots < j_{n-k}$, $(i_1, \cdots, i_k, j_1, \cdots, j_{n-k})$ is a permutation of $(1, 2, \cdots, n)$ and σ is 0 or 1 according to the permutation is even or odd, respectively. Show that:

(1) If $\omega = a_{12}dx_1 \wedge dx_2 + a_{13}dx_1 \wedge dx_3 + a_{23}dx_2 \wedge dx_3$ is a 2-form in \mathbb{R}^3 , then

$$*\omega = a_{12}dx_3 - a_{13}dx_2 + a_{23}dx_1.$$

(2) If $\omega = a_1 dx_1 + a_2 dx_2$ is an 1-form in \mathbb{R}^2 , then

$$*\omega = a_1 dx_2 - a_2 dx_1.$$

$$(3) * * \omega = (-1)^{k(n-k)}\omega.$$

Note: Let an array of n numbers $(1 \ 2 \cdots n)$ be given. An array of numbers consisting of $1, 2, \cdots, n$ in arbitrary order is called an **even permutation** (resp. **odd permutation**) if it is obtained by even (resp. odd) number of swapping two adjacent numbers. The array $(1 \ 2 \cdots n)$ itself is an even permutation. For example, $(1 \ 3 \ 2)$ is an odd permutation and $(3 \ 2 \ 1)$ is an even permutation. Also $(2 \ 1)$ is an odd permutation and $(1 \ 2)$ is an even permutation.