Final Exam Review Sheet (May 12th Updated Version)
 MATH 25500 Section 01
 Exam date and time: 19th May 2017, 14:10-15:25

Instructions: This exam is closed-book and closed-notes. Electronic devices are also not permitted to use. Talking to other students will not be allowed. Answers without justifications and/or calculation steps may receive no score.

1. Evaluate the integral

$$
\int_{C}\left(2 x^{3}-y^{3}\right) d x+\left(x^{3}+y^{3}\right) d y
$$

where C is the unit circle in \mathbb{R}^{2}.
2. Use Green's theorem to calculate the area of the circle with radius R centered at $(0,0)$ in \mathbb{R}^{2}.
3. Compute the line integral

$$
\int_{C} x^{3} d x-y^{3} d y
$$

along the unit circle C in \mathbb{R}^{2}.
4. If C is a closed curve that is the boundary of a surface S, and f and g are C^{2} functions, show that

$$
\int_{C} f \nabla g \cdot d \vec{r}=\iint_{S}(\nabla f \times \nabla g) \cdot d \vec{S}
$$

5. Prove or disprove the following statement: If a C^{1}-vector field \vec{F} is defined on any convex region D in \mathbb{R}^{2} satisfying that $\int_{C} \vec{F} \cdot d \vec{r}=0$ for any loop C in D, then there exists a function f defined on D satisfying that $\vec{F}=\nabla f$.
6. Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=x^{3} \vec{i}+y^{3} \vec{j}+z^{3} \vec{k}$ and S is the surface of the unit sphere in \mathbb{R}^{3}.
7. Calculate $\iint_{S} \frac{\vec{r}}{r^{3}} \cdot d \vec{S}$ in the case that S is the boundary of a subset V in \mathbb{R}^{3} that the Gauss' divergence theorem applies, and $(0,0,0)$ is contained in \mathbb{R}^{3}. Here $\vec{r}:=(x, y, z)$.
8. Let $\omega=y z d x+z x d y+x y d z$. Compute $d \omega$.
9. (1) Let $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a differentiable map. Assume that $m<n$ and let ω be a k-form in \mathbb{R}^{n}, with $k>m$. Show that $f^{*} \omega=0$.
(2) Let ω be a differential k-form with k an odd positive integer. Prove that $\omega \wedge \omega=0$.
10. Given a k-form ω in \mathbb{R}^{n} we will define an $(n-k)$-form $* \omega$ by setting

$$
*\left(d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}\right)=(-1)^{\sigma}\left(d x_{j_{1}} \wedge \cdots \wedge d x_{j_{n-k}}\right)
$$

and extending it linearly, where $i_{1}<\cdots<i_{k}, j_{1}<\cdots<j_{n-k},\left(i_{1}, \cdots, i_{k}, j_{1}, \cdots, j_{n-k}\right)$ is a permutation of $(1,2, \cdots, n)$ and σ is 0 or 1 according to the permutation is even or odd, respectively. Show that:
(1) If $\omega=a_{12} d x_{1} \wedge d x_{2}+a_{13} d x_{1} \wedge d x_{3}+a_{23} d x_{2} \wedge d x_{3}$ is a 2 -form in \mathbb{R}^{3}, then

$$
* \omega=a_{12} d x_{3}-a_{13} d x_{2}+a_{23} d x_{1} .
$$

(2) If $\omega=a_{1} d x_{1}+a_{2} d x_{2}$ is an 1-form in \mathbb{R}^{2}, then

$$
* \omega=a_{1} d x_{2}-a_{2} d x_{1} .
$$

(3) $* * \omega=(-1)^{k(n-k)} \omega$.

Note: Let an array of n numbers ($12 \cdots n$) be given. An array of numbers consisting of $1,2, \cdots, n$ in arbitrary order is called an even permutation (resp. odd permutation) if it is obtained by even (resp. odd) number of swapping two adjacent numbers. The array $\left(\begin{array}{ll}1 & 2 \cdots n\end{array}\right)$ itself is an even permutation. For example, $\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$ is an odd permutation and $\left(\begin{array}{lll}3 & 2 & 1\end{array}\right)$ is an even permutation. Also $\left(\begin{array}{ll}2 & 1\end{array}\right)$ is an odd permutation and $\left(\begin{array}{ll}1 & 2\end{array}\right)$ is an even permutation.

