

$$
\begin{aligned}
& A_{x}=10 \cos 300^{\circ}=10 \cos \left(2 \pi-\frac{\pi}{3}\right)=10 \cos \frac{\pi}{3}=5 \\
& A_{y}=10 \sin 300^{\circ}=10 \sin \left(2 \pi-\frac{\pi}{3}\right)=-10 \sin \frac{\pi}{3}=-5 \sqrt{3}
\end{aligned}
$$

If we write the length 1 vector in the positive x - and y-axis direction b) \hat{e}_{x} and \hat{e}_{y},

$$
\vec{A}=5 \hat{e}_{x}-5 \sqrt{3} \hat{e}_{y}
$$

\#2

Step 1. B and B's wife are applying the face \vec{F}
\vec{F} has length $10 \sqrt{2}$ (Pytaforean the) with angle $45^{\circ}\left(=\frac{\pi}{4}=\tan ^{-1}\left(\frac{10}{10}\right)\right)$
Step 2. Note that B's two kids are applying forces $10 \sqrt{2} \mathrm{~N}$ total to the southeast. From this, notice that this force will Cancel the fore applied by B's wite, and its X-component is equal to the fore of B. Hence 20 N of force to the
\#3.
 East
$A+B=5 \quad$ (Pytagorean the)
the angle $\phi=\tan ^{-1} \frac{3}{4}=36.87^{\circ}$
Hence $5<36.87^{\circ}$
\#4.

x-component
y-component

$$
\begin{array}{rlrl}
\vec{A} & 1 \cdot \cos 45^{\circ} & =\frac{\sqrt{2}}{2} & 1 \cdot \sin 45^{\circ}=\frac{\sqrt{2}}{2} \\
\vec{B} & 2 \cdot \cos 180^{\circ} & =-2 & \\
\vec{C} & 3 \cdot \sin 180^{\circ}=0 \\
& & 3 \cdot \cos 330^{\circ} & =3 \cos 30^{\circ} \\
& & 3 \cdot \sin 330^{\circ} & =-3 \\
& &
\end{array}
$$

$$
\text { Let } \vec{F}=\vec{A}+\vec{B}+\vec{C} \quad F_{x}=1.31 \quad F_{y}=-0.79
$$

$$
\begin{aligned}
& \sqrt{F_{x}^{2}+F_{y}^{2}}=1.53 \\
& \text { coludeter }
\end{aligned}
$$

Angle $=\tan ^{-1}\left(\frac{F_{y}}{F_{x}}\right)=-31.09^{\circ}$
Hence $1.53<328.91^{\circ}$
\#5.

$$
\begin{align*}
2 x-6 x i^{3}-3 i^{2} & =y i-y+7 i^{5} \\
\Leftrightarrow 2 x+3+6 x i & =-y+(y+7) i
\end{align*}
$$

Real pout: $2 x+3=-y \Leftrightarrow 2 x+y=-3$
imagivoung pat: $6 x=y+7 \Leftrightarrow 6 x-y=7$
From (1) (2) $8 x=4$. So $x=1 / 2$. pluginto (1)

$$
2 \cdot 1 / 2+y=-3 \quad y=-4
$$

\#6.

$$
\begin{aligned}
& \frac{4 i}{1-i}-\frac{8+i}{2+3 i}=\frac{4 i(2+3 i)}{(1-i)(2+3 i)}-\frac{(8+i)(1-i)}{(2+3 i)(1-i)} \\
= & \frac{8 i-12-(8+i-8 i+1)}{2+3 i-2 i+3}=\frac{-21+15 i}{5+i} \\
= & \frac{(-21+15 i)(5-i)}{(5+i)(5-i)}=\frac{-105+15+75 i+21 i}{26} \\
= & -\frac{90}{26}+\frac{96 i}{26}
\end{aligned}
$$

\#8 louth $=\sqrt{(-3)^{2}+(4)^{2}}=5$
reference angle $=\tan ^{-1}\left(\frac{4}{-3}\right)=53.13^{\circ}$
so $\quad 5<126.87^{\circ} \quad\left(=180^{\circ}-53.13^{\circ}\right)$
\#9: First Change $\frac{\sqrt{3}}{2}+\frac{1}{2}$ i into polar form

$$
\text { length }=\sqrt{\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\sqrt{\frac{4}{4}}=1
$$

refucanangle $=\tan ^{-1}\left(\frac{1 / 2}{\sqrt{3} / 2}\right)=\tan ^{-1}(1 / \sqrt{3})=30^{\circ}$
Standard position angle in this case.

Note $\tan 30^{\circ}=1 / \sqrt{3}$
So, in polar form, the given number is

$$
1<30^{\circ} \quad 30^{\circ}=\frac{\pi}{6}
$$

In exponential form: $\quad 1 \cdot e^{\frac{\pi}{6} i}$
\#10.

$$
i=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=1 \cdot e^{\frac{\pi}{2} i}
$$

So the modules of all three roots are $\sqrt[3]{1}=1$ arguments an $\frac{2 n \pi+\frac{\pi}{2}}{3}, n=0 \quad \frac{\pi}{6}$
Three rods $\left\{e^{\frac{\pi}{6} i}, e^{5 / 6 \pi i}, e^{3 / 2 \pi i}\right\}$.

$$
\begin{aligned}
& n=1 \quad 5 \pi \\
& n=29 \frac{9 \pi}{6}
\end{aligned}
$$

$$
n=2 \quad \frac{3 \pi}{6}=\frac{3 \pi}{2}
$$

