Midterm Examination 3 Review MTH 13 Section E01 Exam Date: 4 May 2017

1. Draw the graph of $y = 3\cos x$ where $0 \le x \le 2\pi$. Indicate both x- and y-coordinates of the points where the y value is in its maximum and minimum.

2. What is the period and the amplitude of the function $y = \frac{1}{4} \cos \frac{\pi}{4} x$?

3. Determine the amplitude, the period, and the phase-shift of the function $y = 2\sin(x - \frac{\pi}{3})$ and graph it.

4. Graph one cycle of $y = \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2}$.

5. Prove the following identity:

$$\frac{1-\sin x}{\sin x \cot x} = \frac{\cos x}{1+\sin x}.$$

6. Recall that $\sin 45^\circ = \frac{\sqrt{2}}{2} = \cos 45^\circ$, $\sin 30^\circ = \frac{1}{2}$, and $\cos 30^\circ = \frac{\sqrt{3}}{2}$. What is the exact value of $\cos 15^\circ$?

7. Simplify the following expression:

1.	Simplify the following expression.	$\cos 3x$	$\sin 3x$
0		$\sin x$	$\cos x$.
8.	Simplify the following expression:	x	$\sin x$
		$\cos\frac{\pi}{2} =$	$\overline{2\sin\frac{x}{2}}$
9.	Solve the equation: $\cos \frac{x}{2} = 1 + \cos x$,	$(0 \le x <$	2π).

10. What is the value of $\cos^{-1}(\cos 5\pi)$?