## Lecture 1. Conics, invariants, center

## 1. Standard Conscs

(1) Paraboda IIm

Def: Let a >0. The Standard parabola with modulus a



(2) Ellipse Efg.

Def: Let a>b>o. The Standard real ellipse with moduli a, b is



Note In our definition, circles are not ellipses, but circles are obtained by taking limits b -> a



#### 2. Matrices and invariants

Def: A Zuadratic function Q: IR x IR -> IR (x,y) m> Q(x,y)

Such that  $Q(x,y) = ax^2 + 1hxy + by^2 + 2gx + 2fy + C$ .

E.g. The unit circle  $x^2+y^2=1$  can be viewed as the Set

 $Z(Q) = \{ (x,y) \in \mathbb{R} \times \mathbb{R} : Q(x,y) = x^2 + y^2 - 1 = 0 \}$ 

Two quadratic functions Q, Q, are Scalar multiples of each other if Q, = \lambda Q\_ for some \lambda \in IR\so}

Def: A ConvC is a set of quadratic functions each of which is a Scalar multiple of the other.  $Q_1 = \chi^2 + \eta^2 - 1$   $Q_2 = \chi^2 + \eta^2 - 1$   $Q_{2015} = \chi^2 + \chi^2 - 1$ 

Def Let 
$$Q(x,y) = ax^2 + 2hxy + by^2 + 2gx + 2fy + Cbe$$

a Conic.

The trace invariant  $T$  is  $a+b$ 

The defta invariant  $S$  is  $ab-h^2$ 

The discriminant  $D$  is  $a(bc-f^2) + h(fy - hc) + g(hf-yb)$ 

Note Matrix interpretation.

Need to know what determinants are .

Note is Matrix? A rectangular arrangement of numbers

 $D = \frac{1}{2} \frac{1}{2}$ 



Exercise Find 
$$(xy)$$
 Such that  $(ab)(xy) = (10)$ 

Answer  $(xy) = ad - bc$ 

Del If  $A = \begin{pmatrix} ab \\ cd \end{pmatrix}$ ,  $A = ad - bc$ 

or  $det(A)$ 
 $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \end{pmatrix}$ 

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= a_{12} \begin{pmatrix} a_{21} & a_{32} - a_{23} a_{31} \\ a_{13} & a_{32} - a_{23} a_{31} \end{pmatrix}$$

$$+ a_{13} \begin{pmatrix} a_{21} & a_{32} - a_{23} a_{31} \\ a_{31} & a_{32} - a_{23} a_{31} \end{pmatrix}$$

2x2 324 02 294 X 7!

Matrix interpretation of invavants.

$$A = \begin{pmatrix} a & h & q \\ h & b & f \\ g & f & c \end{pmatrix}$$
: Symmetric heatrix.

Note: The invariants I, S, D are not invariant under Scalar multiplication. However, the following important agualities and inequalities remain invariant:

$$\begin{array}{ccc}
Q \sim \lambda Q \\
\vdots & \tau \sim \lambda \tau \\
\delta \sim \lambda^2 \delta \\
\Delta \rightarrow \lambda^3 \Delta
\end{array}$$

Examples (1) 
$$Q(x,y) = x^2 + y^2 + \frac{1}{10}$$

Associated matrix

$$\begin{pmatrix}
1 & 0 & 0 & S = 1 & S = 1 \\
0 & 1 & 0 & A = -1 & A = 0
\end{pmatrix}$$

Partial matrix

$$\begin{pmatrix}
0 & 0 & -2a & T = 1 \\
0 & 1 & 0 & S = 0
\end{pmatrix}$$
Associated matrix

$$\begin{pmatrix}
0 & 0 & -2a & T = 1 \\
0 & 1 & 0 & S = 0
\end{pmatrix}$$

$$\begin{pmatrix}
-2a & 0 & 0 & A = -4a^2 & 40
\end{pmatrix}$$

(2)  $Q(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$ 

Associated matrix

$$\begin{pmatrix}
a^2 & 0 & C = \frac{1}{a^2} + \frac{1}{b^2} \\
0 & 0 & -1 & S = \frac{1}{a^2b^2} & 20
\end{pmatrix}$$
Associated matrix

$$\begin{pmatrix}
a^2 & 0 & C = \frac{1}{a^2} + \frac{1}{b^2} \\
0 & 0 & -1 & S = \frac{1}{a^2b^2} & 20
\end{pmatrix}$$

$$\Delta \neq 0$$

Standard

Standard

Standard

Standard

Social formula for the control of the con

Def: A conic Q is said to be degenerate if  $\Delta = 0$ 

# Examples (of degenerate comics)

$$Q(x,y) = Q(x,y) = \chi^2 - y^2$$

$$Q(x,y) = \chi^2 - y^2$$

$$Q(x,y) = \chi^2 + y^2 : \text{ irreducible.}$$

## 3. Reducible conxs

A line L: axtbytc

Def: A conic Q is reducible if there exists L, L' lines such that Q = LL' (= (axtbyte)(a'xtb'yte')). Here L, L' are called <u>Components</u> of Q and Q = O is the <u>Joint Quation</u> of L, L'. Otherwise, Q is <u>irreducible</u>.

What are possible reducible conics?

Exercise IS  $Q(x,y) = \frac{x^2 - xy - 2y^2 + 2x + 5y - 3}{\text{Conic?}}$  $Q(x,y) = \frac{x^2 - xy - 2y^2 + 2x + 5y - 3}{\text{Conic?}}$ 

| 12 m21                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lemma: Let Q be a conic and L a line not                                                                                                                                           |
| parallel to the y-axis. Then there is a unique line L'                                                                                                                             |
| Lemma: Let Q be a conic and L a line not parallel to the y-axis. Then there is a unique line L'and a unique guadrate function Ja) S.t.                                             |
| $Q(x,y) = L(x,y) \int (x,y) + J(x)$                                                                                                                                                |
| Theorem (Component lemma) Suppose every point on the line I lies                                                                                                                   |
| on Q: a conic. Then Q must be a reducible conic.                                                                                                                                   |
| d.e. Here exists L'a line Such that                                                                                                                                                |
|                                                                                                                                                                                    |
| Proof: Assume 1: not parallel to y-axis.                                                                                                                                           |
| $ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                        |
| In the assumption, s.t. $L(x,y) = 0 \Rightarrow Q(x,y) = 0$                                                                                                                        |
| Therefore $J(x) \equiv 0$ for every $x \in IR$                                                                                                                                     |
| Q = LL'                                                                                                                                                                            |
| Sketch of proof of Lemma: $L = \alpha x + \beta y + r$ $L' = \lambda x + \beta y + r$ $L' = \lambda x + \beta y + r$ $L' = \lambda x + \beta y + r$ $L' = \lambda x + \beta y + r$ |
| 2 = 27+189+12 52, 29, 7el 24/23<br>BP a B+ x/B or + B/r                                                                                                                            |