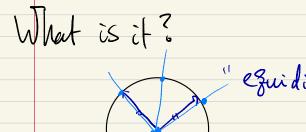
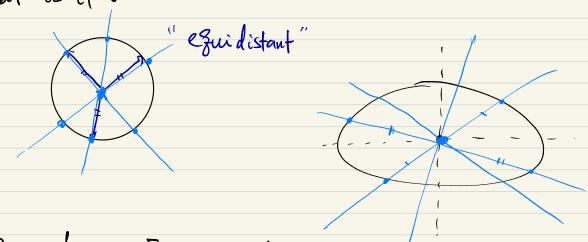
Lecture 2. Centers of conics, Jeometric transformations

1. The Concept of a Center

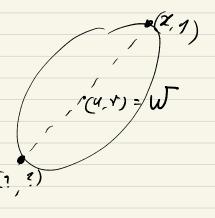




Def: Let W = (u, v): fixed.

A Central reflection in W is a mapping R2 -> 1R2 Such that (x,y) m> (24-x, 2v-y)

Note The mid point of (x,y) and its Central reflection in W is Witself.



Def: Let Q be a conic.

A Center W= (u,v) of Q is a point that Satisfies Q(x,y) = Q(2u-x, 2x-y)

Example (1) For
$$Q(x,y) = (x-a)^2 + (y-\beta)^2 + \delta$$

Verify that (x,β) is a center of Q .

$$(x-a)^2 + (y-\beta)^2 + r = (2a-x) - a)^2 + (2\beta-y) - (\beta)^2 + r$$

$$\frac{(2)}{2^{2}} \left(\frac{(x,y)}{2^{2}} + \frac{(y-1)^{2}}{3^{2}} - 1\right)$$

$$= \left(\frac{(2\cdot 1-x)-1}{2^{2}} + \frac{(y-1)^{2}}{3^{2}} - 1\right)$$

$$= \left(\frac{(2\cdot 1-x)-1}{2^{2}} + \frac{(y-1)^{2}}{3^{2}} - 1\right)$$

Note: This definition makes sense whether or not the zero set of a conic Q contains a point.

2. Finding Centers

Def: A translation of the plane through
$$(u, v)$$

is a mapping $IR^2 \rightarrow IR^2$ where $x = \overline{X} + u$
 $(x, \overline{Y}) \mapsto (x, \overline{y})$ $y = \overline{Y} + v$

Observation: Fiven a Conix Q(x,q) translated through cq,v)

and obtain a New Conic R(X,Y) = Q(X+u,Y+v)Recall $Q(x,q) = \alpha x^2 + \lambda h x q + l q^2 + l q x + l q + l q$

(1) The Zuadratic terms remain unchanged, while linear and constant terms vary. 2) The Constant term of R(X,Y) is Q(u,v) Example: Q(x,9) = 2x2+3y2-12x+12y+24 translated flyough (3, -2) R(X,Y) = Q(X+3,Y-2) $= 2x^{2} + 3y^{2} + Q(3,-2)$ A point (u,v) is a center of Q(x,y): conc (=) (0,0) is a center for the translated conic R(X,Y) = Q(X+M,Y+V)Proof: R(x,y) = Q(x+u, y+v) = Q(x+u, y+v) = Q(x+u, y+v) (u,v) = Q(u-x, v-y) = R(-x, -y)= R(2.0-x, 2.0-9) (0,0): center of R Lemma: Let $Q(x,y) = \alpha x^2 + 2hxy + by^2 + 2gx + 2hy + c$

(0,0) is a center of Q (=) The coefficients of the linear terms x, y are both 3ero.

```
Proof: (0,0) is a centr of Q
        <=> The following are identical
            Q(x,y) = \alpha x^2 + 2hxy + by^2 + 2gx + 2fy + C
Q(-x,-y) = \alpha x^2 + 2hxy + by^2 - 2gx - 2fy + C
                 2g = -2g, 2f = -2f
             in g= 0 and f=0.
Theorem (Center of a conic) Let Q be as above.
If (U,V) is a center of Q, then it is a solution to
   \begin{cases} aut & hv + f = 0 \\ hu + bv + f = 0 \end{cases}
and Vice Versa.
 Proof: We've Seen that
      (u,v): center of Q
                               (a) (a) is a content Q(xtu,ytv)
                              <=> Coefficients of linear terms of Quetu, y+v) are zero.
                        a (xtu)2+2h(xtu)cy+v)+b(y+v)2
     Q(xfu, yfr) =
                         +2g(x+u) + 2f (g+v) +C
```

3. Geometry of Centers

Theorem: Let Q(2,9) = az2+2hzy+by2+2gx+2fy+c: conic.

(1) Q has a unique center, a line of centers, or no center

2) Q has a unque center (=) St O.

(3) If Q has line of centers then $\Delta = 0$.

Proof (1) Obvious.

(t) (ax thy tg =0 has a unifore solution. (hx + by + f =0

(a) $\begin{pmatrix} ah \end{pmatrix} \begin{pmatrix} x \\ -f \end{pmatrix} = \begin{pmatrix} -g \\ -f \end{pmatrix}$ has a unique solution

(=) $\begin{vmatrix} ah \\ hb \end{vmatrix} \neq 0$

(3) (x) has infinitely many solutions

(h, b, f) are of Scalar multiple.

Exercise $\begin{cases} 2\pi 4 \\ 6 \end{cases}$ $\begin{cases} 3\pi 4 \end{cases}$ $\begin{cases} 3\pi 4 \\ 6 \end{cases}$ $\begin{cases} 3\pi 4 \end{cases}$ $\begin{cases} 3\pi 4 \\ 6 \end{cases}$ $\begin{cases} 3\pi 4 \end{cases}$ \begin{cases}

Scalar multiple

4. Congruences

Idea: In Jeometry, 11, When can we say two objects are the Same? 23 Can you classify them?

Pef: Consider a planar map ϕ s.t. $\phi(X,Y) = (x,y)$

Here $\chi = \chi(\chi, \zeta)$ are components of ϕ 7 = 8(x, Y)

The map ϕ is invertible if for every (x, y) there is a unique (x, y) Such that $\phi(x, y) = (x, y)$:

 $\phi^{+}(x,y) = (X,Y)$

The components of ϕ^{-1} are X = X(x, y) Y = Y(x, y)

Def: The rotation matrix through an angle 6 is

 $R(o) := \begin{pmatrix} \cos o & -\sin o \\ \sin o & \cos o \end{pmatrix}$

You check! (2) (3) (4) (5) (5) (5) (5) (5) (5) (7) Note: ROis a planar map. proposition: (1) R(Q,) o R(Q,) = (2(Q, ta) = R(Q,) o R(Q,) (2) $R(0) \circ R(0) = I_1 = R(-a) \cdot R(0)$ Notice that $\{R(a): O \in R\}$ has a Special algebraic SO(2), Continuous costs. Lie Froup Pet: A Congruence is a planar map $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ of the form $\phi(Z) = R(0)Z + T$ Where Z= (X, Y) Ropational Translational Part Part Remark: This definition of Congnesse does not fake Ento account possible reflections. 2 3 3

We can always write a Congruence in terms of Coordinates

$$\begin{pmatrix} x \\ y \end{pmatrix} = R(0) \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y \\ y \end{pmatrix}$$
 when $T = cy, v$

$$= \left(\frac{\cos \alpha \times - \sin \alpha \times + u}{\sin \alpha \times + \cos \alpha \times + v} \right)$$

We can also find the inverse of of

$$\phi^{-1}(x) = \mathbb{R}(-\omega)(x) - \mathbb{R}(\omega)$$

$$= \left(\begin{array}{c} (x-u) \cos \alpha + (y-v) \sin \alpha \\ -(x-u) \sin \alpha + (y-v) \cos \alpha \end{array} \right)$$

Example Central reflection in the print cu, v) $(X,Y) \longrightarrow (X,Y)$

$$\begin{pmatrix} \chi \\ \gamma \end{pmatrix} = \begin{pmatrix} 24 - \chi \\ 2v - \gamma \end{pmatrix} = \begin{pmatrix} \cos \pi - \sin \pi \\ \sin \pi & \cos \pi \end{pmatrix} \begin{pmatrix} \chi \\ \gamma \end{pmatrix} + \begin{pmatrix} 24 \\ 2v \end{pmatrix}$$

Def: A pair (G,) is a group if (b) is a socialise such that = eg=g.

(3) For every g CG, thereis gt Such that ggT=e.

Theorem The Congruences form a group.

ong (R^2) = $(R^2)R^2$ of congruence $(R^2)R^2$ of congruence

 $(1) \quad \phi_1 \left(\phi_2 \phi_3 \right) = \left(\phi_1 \phi_2 \right) \phi_3$

(2) [,

(3) ϕ^{-1} ?