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Thus Rinp = 0 whenever the first two or last two indices are the same. Thus only four
of the components are different from zero. They are

Ring = Ron = baby — bigbey = LN-M2 = b (10.84)

and R12§1 = Rzuz = busbas — basbny = —(LN‘—‘ME) = —b (10.35)
Although the curvature tensors were defined in terms of the coefficients of the second
fundamental form, they can in fact be expressed only in terms of the coefficients of the

first fundamental form, i.e. the metric tensors, and their derivatives, In Problem 10.29,
page 224, we prove

] 3
Theorem 109, Euwipe = i Lm — = Tijm + TiTmka — TETmja

Since the Christoffel symbols depend only upon the metric tensors and their derivatives,
it follows that the same is true for the curvature tensors. We note that this is equivalent
to Gauss’s theorem, since from equation (10.24) the Gaussian eurvature

K = IN—-M* _ b _ R
- EG-~F T g — g

Solved Problems

THEORY OF SURFACES

10.1. Show that the Gauss;—Weingarten equations for a Monge patch x = e, + ves +
flu,v)es are

X = PIX, + grx. + rg'?N
¢*°Nu = (spq — rq® — r)xe + (rpg — 8D* — 8)%v

X = PSXy + ¢5%x, + 8¢V2N
g No = (Ipg —s¢*— 8)x« + (sPg — tP* — x>

gXow = Pixu +gixy + tg''N
where 2 =/fu, ¢=fo, ¥ =/fuu, 8= fuo, t=Ffor, g=1+p>+ ¢
Xy = @ peg X, = ezt ey Xuy — Tl Xyy =88, X, = ey
E=x0x =1+, F=x% =95 G=%"% =1+
. EG—F2 = 1+p2+ g2 = g, N = x, Xx,f|x, Xx,] = —(pe, + ges— e5)/gl’2
L = x*N = r/g"2, M = x,,N = 3/gl/2, N = x,,*N = t/gl/2
E, = 2pr, B, = 8ps, F, = patgr, F, = pt+qs G, = 28, G, = 2gt
Prom equations (16.2) and (70.4) we obtain
rl, = prig T}, = pafg Ty = pig
Ty = glg T, = gslg T3 = atly

It

Bl = (spg—rg2—r)/gss Bi = (tpg —eq2— 8)/g¥2
B = (rpg—9p®—s)/g*? B3

from which the result follows.

(apq — tp* — )/ g*/*
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10.2. Using the Weingarten equations, show that
I —-2HII+KI =0

where the third fundamental form III = dN-dN, H is the mean curvature and K
is the Gaussian curvature.
Using equation (10.2), page 201, we obtain

N,'N, = (B}xu + ngu} M (ﬁixu + ﬁ?xu)
(MF — LGPE | 2(MF — LGNLF — ME)F _ (LF — ME)*G
(EG— Foy - (EG — F2)2 (BEG— 2R
_ (—2LMF+ LG +EM®(EG—~F? _ (EN—2MF+ LG)L — (LN —M)E
B (EG—F?)2 B EG — F?
= 2HL — KE
Similarly
Ny*N, = (B}, + 87%) * (81x, + £2%,)
_ MF—LG)INF~MGE _ (NF—MG(LF — ME)F
- (EG — 722 (EG - F2e
+ MF—LGYMF —NE)F | (LF —ME)(MF — NE)G
(EG — F2 (EG — Fo)2
_ (MEN —M°F + LGM — FLN)(EG —F?) _ (EN—2MF+LGOM _ (LN - MHF
- (EG — F2)2 - = EG — P2 G — F?
= 2HM — KF
Also Ny*N, = (Blx,+p2x,)« (Bixy + A2x,)
(NF — MGY'E | 2NF — MGYMF — NE)F _ (MF - NEZG
(EG=F2)2 (EG— F2)2 (EG — Fo?
{ENZ—2MFN + MIGYEG—F?) _ (EN—-2MF+LGN _ (LN~M2%G
- EG-F2 = EG — P2 EG — F2
= 2HN — KG

It follows that
III = dN+“dN = (N,du + N,dv) (N, du + Nydv) = N,*N,du? + 2N, N,dvdev + N, * N, dv?
(2HL — KE) du? + 2(2HM — KF) du dv + (2HN ~ KG) dot
2H(L du? + 2M dudv + N dvt) — K(E du? + 2F dudv + G dv?) = 2HI] — K1
which gives the required result.

)

10.3. Prove that the Christoffel symbols I are given by equations (10.4), page 202.
Observe that
Xy " Xyuw — %(xu'xu)u = ‘%Em Xp*Xyp = %(xﬂu'xu)n = -;—E‘,
Xy * Xpy 3(x, * Xy 16y X Xy = X Xohu 3G,

Also using the above,
Fip = urxh = X % X Xy = XX + 38,
Fu - (xu.xu)u = x'uu'xv+xu'xuu = ';Gu-'-xﬂ.xvu

Hence Xp ' Xyu = Fy— 4§48, XXy = Fy— 4G,
Now from the Gauss equations and the above,

. 1B, = x,'Xy = TL%X,'%X, + THhx,'x, = THE + THF
Fy— 3B, = X%y = I‘}lx-v'x'u"' I‘ix—u'xn = P111F+I‘f1G
3E, = XXy = Thxe'X, + TpXu'x, = TLE + ILF
16, = Xy % = Piexu'xu"' rix, x, = I‘12F+I‘f2a
F,— 46, = X,*Xy = ThXy'Xy + IhXy*x, = Iyl + ILF
16, = Xo'Xpy = Th¥, Xy + Thx,ox, = T5F + ILG

Solving the first two equations for I‘,ll and 1“;'1, the second two equations for I‘{2 and I‘fz, and the
last two equations for I'}, and T'%,, we obtain
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o _ GE.—2FF, + FE, , _ GE,—FgG, . _ 2GF,— GG, ~ FG,
u = 2EG — ) 2 = HEG—F9 P22 = =~ 3EG—F?
oo 2EFu—EE, + FE, .  EG,-FE, . _ EG,—2FF,+ FG,
1= TTyEG—FY T = sma—rs T™n = —ZEe-1
which are the required results.
104. Prove that K(EG —F?)? = [XueXuXo)[XuuXuXn] = [XuoXuXo]?
L = %" N = Xy Xy X X% XXy = [RunXyXy)/ 1%y X %]
M = %,,'N = [XuXux,}/Ix, X x4, N = %' N = [x,,%5,%,]/|x, X x|
—_ o
Thus LN — M2 e g
l'.xuxxv\?'
Also [y X |2 = (®y X R} " (K XX} = (X 1M, %) — (xy X ))2 = EG — F?
Hence x - LN 12X [XppuXy] — [XupXuXy)?
=~ EG-F? (BG — F2)2
105. Using the result of the above problem, prove that
KEG—-F? = (Fuw—31Ew— $Gu)(EG —F?)
' 0 F,—3G. 3G, 0 3B, 4G.
+ det 1E, E F | —det|dF, E F
F [T ‘iEv F G éGu F G
Note that this is a direet proof of Gauss’ Theorem.
We note that
dy dy dg g b o
[abejidef] = det|e; e €| det|ay by e
i fo Fa ay by o4
dl dg ds @, bl &y a*d bed e+d
= det e, e e3 || @ by &5 = det|a*e bre cre
fi f2 fa|jas b3 e3 a-f h-f c-f

Thus from Problem 10.4 and the computations from Problem 10.3, we have

Kyp* Kyppy Xy " Xyy Xp* Xy Xyp " Kyp Xy " Xyy Xy " Xyp
KEG—F%) = det|x,*X, X,"Xy Xp°"Xp — det| x,,*x, X,'X, Xy°X,
X "Xy Xy*Xp Xy * Xy Xy Xp Xy " Xy Xy * Xy
Xyt Xpp Fy— %Gu %Gu Kyp * Xyy '&Ev %Gu
= det 1E, E F -~ det 3E, E F
F,—1E, F G 1G, F G
. . E Y |
Since both determinants have the common minor F’ al’ it follows that
KBG—F2 = (Xyu'Xpp — Xyo* Xu)(EG— F?)
0 F,—1G, 1G,\ 0 4E, 16,
+  det 1E, E F —~ det|3E, E F
F,—1E, F G iG, F G
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10.6.

10.7.

10.8.
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In Problem 10.3 we obtained x,,+x,= F,— iE, and x,,*x, = }G,. Hence
Fa— 3B = (" Xodo = Xyuo" Xy + Xyy * Xy G = Kyp* Xy = Xppy X, + Rup * Kuy

Subtracting,
Xow "Xpp — Xpp* Xy = (Fu"_%Eo)v - %Guu = F, - %Evv - gGuu
which gives the required result.

If the parameter curves on a patch are lines of curvature, show that the Codazzi-
Mainardi equations (10.7) take the form
ak, _1E, Jiey
WS ZERTY

where «, and «, are the principal curvatures.

_ 16
=27

(Kl - "2)

bl =

When the parameter curves are lines of curvature, F = M = 0. Thus equations (1¢.7) reduce to

LGE NEE L N
— 1 _ oapl v v L N
L, = Ly — Nt = 3p@ T Ael %E”(E+G)
LGG NEG L N
= —ppl 2 u Lo R— R
and N, = =LTy + Nri, SEC + SEC iG, (E+ G)

or L\ _B (N L 4 () =G(L_N
E/, ~3E\G E/ * G/,  2G\E

But from Theorem 9.13, page 186, if the parameter curves are lines of curvature, «; = L/E and
«y = N/G, which gives the required result.

Prove that there does not exist a compact surface in E? of clags =2 with Gaussian
curvature K =20,

Suppose otherwise, i.e. suppose 5 is a compact surface of elass =2 with K =0 at each
point. Now consider the real-valued function f(P)= |2 =x+x, where x is the peint P.
We leave ag an exercise for the reader to show that f is continuous on 8. Hence from Theorem 6.9,
page 110, f takes on its maximum, say, f(Py)} = |xy[2 = r? at some point Py on S. Note that »2 > 0.
Otherwise, we would have f=0 on S, since f=0 and r? is its maximum. But then S5 would
consist of a single point x = 0, which is impossible. Now let x = x{u, %) be a patch on § contain-
ing P, such that the u and v parameter curves have principal directions at P, Since
F(P) = f(x(u,v)) has a maximum at Py,

ffou = 2x+x, = 0 and affév = 2x-x, = O
at Py Also
#ffou? = 2x, X, +2x+x,, = 0 and f/v? = 2x, x, +Bx°*xy, = 0

at Py. From the first two equations above we obtain that x is orthogonal to x, and x, at P;. Hence
N = =x/[x| = =xfr at P;,. We may assume that the sense of N is such that N = x/r. Substituting
into the second two equations ahove, we obtain that x,-x, +*N+x,, =0 and x,*x,+rN-x,, =0,
or E+rL=0 and G++N=0, or L/E=-1fr <0 and N/G=—1/r <0 at P, Since the
# and v parameter curves have principal directions at P, it follows from Theorem 8.11, page 185,
that x, = L/E and «, = N/G, and hence from the above K =uxu; = LN/EG=1/r2>0 at Py,
which is again impossible since K =0 on §. Thus the proposition is proved.

Prove that f(P) = [«,(P)—«,(P)]* is a continuous function on a surface.

Recall that the principal curvatures at a point P on a surface § depends on the orientation of
the patch containing P, changing sign when there is a change in the sense of N. Thus unless § is
orientable, it may not be possible to define x,(P) and «(P) themselves as continuous functions
throughout 8. Note however that f is independent of a change in sign of both x; and x, and hence
is an intrinsic property of 3, independent of the patch containing P.
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To prove that f is continuous at a point Py, we suppose that x = x(x,v) is a pateh containing
P, BSince «; and «, are continuous functions of the first and second fundamental coefficients,
f(P) = fix(x,v)} is a continuous function of » and ». Thus given ¢ >> 0, there exists &, > 0 such
that |f(x(a, ¥}) — flx(ug, vo}}l < ¢ for (w,®) in Sa,(%o: vp). From Problem 8.13, page 165, the image
M of 83, (up, vg) on 8 is the intersection of an open set O in E® with S. It follows that there exists
an Sgixge) in E? such that Sg(xpdnN S is contained in M. Thus for x in Sgix) NS we have
|f(x) — f(xy}l < e. This shows that f is continuous at P, which proves the proposition.

Prove Hilbert's lemma: If at a point P, on a surface of sufficiently high class,
(i) x(P,) is a local maximum, (ii) «(P,) local minimum, (iii} x(P) > «(P;), then
K(Py) = 0.

Since x3(Pg) # ra(Py), Py is not an umbilical point. Thus from Theorem 9.10, page 185, there

exists a patch x — x(u,v) containing P; for which the parameter curves are lines of curvatures,
From Problem 10.6 it follows that

axy 1 F, kg 16
RS A0 RCUNEE LI & A
a2, EE,, — EF E,
Differentiating, F:EI = -12- (%—") (es —xp) + % E(Ez — K3y

%y 1 /66, — G
e 2

_ 1 G
Fi) {xy —xg) + 2 F("l —xg)y

Since x; and «; are extreme values at Py, ox,/0v = dxp/0u =0 at Py Also «, # x; at P,. Thus
from the first two equations above, B, = G, = 0 at P,. Substituting into the second two equations
above, it follows that

P L 1Bw 0 g Moo 18w
3z 2 E k) and o = o —mlnTa)

Since x, iz a maximum at Py, 82«,/0v2 = 0 at Py Also x, > x; at Py and E > 0. Hence from the
first equation above, E,, = 0 at P, Since x, i3 a minimum at P;, #%/du? = 0 at Py, Alse G > 0.
Hence G, =0 at P, Finally, since the parameter curves are lines of curvature, we have
F=M=0 AlsoatP;, E,=0 and G, = 0. From Problem 10.5 it follows that at P,

1 By + Gy
2 EG

Since E,, =0 and G,, =0 it follows that K = 0, which is the required result.

K =

Prove Theorem 10.7: The only conneéted and compact surfaces of sufficiently
high class with constant Gaussian curvature are spheres.

Suppose S is a connected and compact surface with K = constant. From Problem 10.7, not
every point on § can have K = 0. Hence we can assume K = constant > 0. Now if we can show
that every point on S is a spherical umbilical point, then it would follow from Theorem 10.5,
page 205, that S is a sphere and we are finished. In order to show that every point on S iz a
spherical umbilical point, we consider the function f(P) = [(x{P)—«xx(P)]2. From Problem 10.8,
f(P) iz continuous on 8. Since S is compaect, f takes on an absolute maximum at some point P,
on 8. Now suppose f > 0 at P, Since f is continuous at Py, f > 0 in some neighborhood S(P).
Since f=(—w)2>0 in S(Py), s # & in S(Py). Also x; and x; have the same sign in S(Py)
since K = xxp >0 in S(Py). Thus we can assume « > xp >0 in S(Py). Bince «—xs >0 in
S(Py) and (x; ~ &) has a maximum at P, it follows that «; —x; has a local maximum at P,
Since K = r;xy = congtant > 0, «, decreases when x; increases and it follows that «; has a local
maximum at P and «, has a local minimum at P,. Thus we see that if f > 0 at Py, then (i} x, has
a lecal maximum at Py, (ii) x; has a local minimum at Py and {il) «; > «; at Py, It follows from
Problem 10.9 that K = ¢ at P,. But this ia impossible since K > 0 on 8. Thus f is not positive
at Py. But f takes on its maximum at Py and f(P} =0 for all P. Hence f=0 on S. It foilows
that «, = «; at each P on 5. Since the principal curvatures are extreme values of the normal
curvature at P and since K > 0, it follows that the normal curvature « == constant # 0 at each
P. Namely, every point on S is a spherical umbilical point and hence S is a sphere.
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TENSORS
1011 If # = azu* and w!'=biv*, show that w' = bhaluf.

We write 2 = gag‘uﬁ. Henee

w = Sbhoe = 3p, Safut = S 3thagut = blagws
« o 8 a B

10.12. Show that gig® = 8, «,4,7 = 1,2, where the g* are defined in equation (10.11).

F1a9%! = gt + g™ = gugnlt — guwils = gl = 1

F1a02 g + 91292 = —gugi/g + Grognfs = 0

F2a9%! = g™ + pf? = Fo1feelg — Gaalrefy = 0

Foef™ = @' + g2g® = —gognf9 + gupn/s = g/s = 1
. 1 ifi=j
Hen gl — —_ 35
enee Yial™ {0 otherwise 1

10.18. Show that 317 = 8787 — 878¢, where the 8} are defined in Example 10.7(b), page 212.

Let Al = 8057 — P8}, Clearly A% =0 if ¢{=j. Now suppose i#j and pr<i. Then
80 =0 and AY =0 unless p=j and ¢ =4, in which case Ay =—1. If i»%j and p=1i,
i 2] r [}
then &7 = 0. Hence A% =0 unless also g =3, in which case A =1. Thus

1 ifi#=jf p=4 g=7
AR = -1 if i3], g=4 p=3j =
0 otherwise

ili]
8y

which is the required result.

10.14. Show that the 8% in the above problem are the components of an absolute tensor
covariant of order 2 and contravariant of order 2.

vo P PRI Gus dub
o8 Juy Iue It git!

y 7 _ sy gy 0P 009 3 0P
(a3 = 3582) 3,y duo 37 9w

g1 02N (o 900 (o gue\ (1 a0 989 (ou gus
o duy B auo j\ sal aw B au¥ * u” \ 3 fas

AP FiAT Jus Jub AP AT Ju® Jub
du® Jub It A uf ux ot owf

dux #ii /\ Jub g} dub it [\ due !

= &5 -8 = & = &

]

Thus &5 are the components of an absolute tensor covariant of order 2 and contravariant of order 2,

Another Method. The products & 5] and &7 5] are the outer products of mixed absolute tensors

covariant of order 1 and contravariant of order 1. Hence they are the components of absolute
tensors covariant of order 2 and contravariant of order 2. It follows that the differences

8 = &F8] —o74f

are the components of an absolute tensor covariant of order 2 and contravariant of order 2,
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10.15. Show that the contraction Az of the components A} of an absolute mixed tensor is a

scalar invariant.

Ju dii dus Jay
Since Ai = Ag 25t 3up: We have /H = Af, 7@ awf+ From equation (10.18), page 208,

dus diy

357 3uf = 33. Hence A, = Aﬁ s = A%, which is the required result.,

10.16. If AL are the components of a tensor contravariant of order 2, covariant of order
2, and of weight N, show that the contraction AZ] are the components of a mixed

tensor contravariant of order 1, covariant of order 1, and of weight N.

ince A = )" gve 982 202 dus 3ub
Since Ay = l:det (&ﬁ)] Agg 2uY quT gk aui’ we have )
ne du; a7 3A Ju® Jup
A = [det( uf)j} Aok 3ot 5uT 30 0T
_ Juy AT ou8 8y ag O8S dub
= [det (ﬁ)] Aes G du® 3w [det (aw)] Adt 3o 3w

That is, the A5; transform as an absolute mixed tensor of weight N, which is the required result.

10,17 If @ =@, ...,u", t=1,...,n, is an allowable coordinate transformation on a
coordinate manifold of » dimensions and ' =wi(@#,...,%") is its inverse, show

au’ Ju®
that -5 2= = 8i.
From the chain rule,
i aw guw! | awi gu? +___+awaun _ oW du®
T Jal dul A dun It dux i
i _ li.fi:jl_ i o dun _
But Fﬁ,—i - {0 otherwiseJ = §i. Thus EIF o Si‘

10.18. If A;' 1’7 and B} are the components of two tensors A and B, contravariant and
covarlant of the same orders and of the same weight, show that

]-..i" — ‘!‘-.” ‘_I”":Y

B M - A,l'r“i. + B!r":-
are the components of a tensor, contravariant and covariant of the same orders and
of the same weight as 4 and B

£y - -
Chih o= AR + B

i Pt cem, S dubs dut ,. SiEh ditPa
= det(ﬁ)_ Agtllg T S + [det(@)] Bel 8 s E

- =N
dut ap- i, diile Jufs
= [s(GE)) msck v s g

[ dui ] o Bul  dub
= et (@) Cor- ! G o

which is the required result.

10.19. If the components A "% of a tensor are symmetric with respect to, say, the 4, and 4
indices, show that the transformed components

e 2t} 1% ay- o, dith oubs
et - o (] s
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are also symmetric with respect to ; and .

N
g ety i — i oy, ditles fith Fubs
AJ‘, o -fx - [det ( >r! Ap;‘ B, _31.&“1 a—ﬁ-—’ - PrTn
= “9.4'1 @, ditht dite . Oubs _ idy- - o
- I:det (au))] A5, 5, Juns Jut sah - Aaon

10.20. If the quantity J = C¥A.B; is a scalar invariant with respeet to the components A;
and B; of any two covariant vectors, show that the C%# are the components of an
absolute contravariant tensor of rank 2.

It is given that the sum C¥A4,B; = €84 B, for any A; and B;. Hence

N - awf ur = . JuY JuT
CHA{Bj = C“'BA‘,BB = C“AT YT "'a&ﬁ = (e e TWTAVBG
Identifying coefficients gives CY = :::“ g—;{ which shows that the CV are the components of

an absolute tensor of rank 2.

10.21. If A, and B, are the components of symmetric tensors, and if z, and y, are com-
ponents of contravariant vectors such that

(Aij_xl ﬁ)x‘ = 0, (Au—szﬁ)y‘ = 0, i,_f = 1,...,??., xl%xg
show that A x's’ = B 2'x' =0 and that «, is a gscalar invariant.

Since (Ay—xByxi =0 for all j, we have (A;— xBylaly? =0, Similarly from the second
equation (A;—spBylytef = 0, or, since the Ay and By; are symmetrie, (A —xpBy)a'y! = 0, Sub-
tracting, we obtain (x,—xz)B”z"y-’ = 0. Since xy 7 x5 it follows that Bya%! =0 and hence

Ayxyl = 0. To show that x; is & sealar invariant, we suppose that Z are the componenta of an
arbitrary contravariant vector and we consider the sum

ou® gub  oul o

— T
9 0w e C due

dus ot \ f ouB aa?
(s~ #1Bog)2" (aw aw) (m 6_u_)

. = (Agp— ki Bop)a¥2785 88 = (Agg — xyBoglaeB

(Ay—mBE® = (Aue— x1Bup) 57

Since (Adgg—xBaa)2* =0 for all 8, (A;—xB)8% =0. But the # are arbitrary. Hence
(A —xB;)2 = 0 for all 5. Thus x, is 2 scalar invariant.

APPLICATIONS OF TENSORS

10.22, Show that the components du!, i =1,2, of a tangent vector dx = x.du* transform
as the components of a contravariant vector. They are called the contravariant
components of dx.

Suppese @ = @l{ul,«?), i=1,2, iz an allowable parameter transformation with inverse

. o R x ax il fx o ox it
ut = wif@i!, %2), i =1,2. Then from the chain rule, x, = e = aml ﬁ.‘- 352 5uf = 3@ JuE-
It follows that dx = x, du® = 6; ﬂr:lf,':"‘ = @dﬁ‘. Hence dét = du“ , which is the reguired
it gus dur 6‘ @
result.
o;
10.23. Show that e Ty + Dikss

Differentiating gy; = x;*x; with respect to uk, 6gij/&u'° = XN "X; + X;* X By definition,
T = X3 * X Hence agijz‘au“ = I“'kj +I‘jki-
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L[ 0gu g Oy
1024. Show tha = o[%n ) 2 04
0 ow that T 2| 30 + Frr iy
ag d
From the above problem, El‘!‘— = I'ﬁk + Ciss Wk: = rkji + I‘;jk, and ".3:"_:: = ij + Pn{.
. L i |, OO By
Since Ty = Dy for all 4,4, k, it follows that a-:—i- + i a;— = 2Ty,
dg o
10.25. Show that P 20T5:.
a 3 g1 9ga9 0712
ﬁ = ZaWugn— 6w = ot Sugy T e gy
ogn 32z 0812 0%a8
= ¥y 22 22 1220120 I aid
g]:g dut te oul + 2 dut go° dul
where we used equation (10.11}, page 206. From Problem 10.23,
o
‘% = gpB(Taig + Tad = (g% + g*BT5) = (T +I‘S;) = 20T

where we uzed I‘fj = g**Ty,, and where we replaced the dummy index 8 by a.

10.26. Show that Roup = FamRk,

B _
From (10.31), page 214, §onRir = Famf® Rk = SmBayx = Ry

10.27. Show that the Christoffel symbols of the first kind transform in accordance with

the law
: = du® Jub du | s
e = {P“‘”a_zf w9 m} F

We recall that the gz are the components of a covariant tensor of rank 2. Thus §Fz =

gg,.%%; g%:. Differentiating with respect to @,
ik ey quf owr Puf dwr | Gup Stwr
aw oW ow owr  YAvigiaw awk T 98 5 awiowr
gy dur duf du¥ Rur Juy "PPue puy

aue 0 o 0wk T Doy Sgiaw aax T Yev Spian B

a ] @
where we used the chain rule 98y _ 98y u

i Pt
that gap = g Similarly di du

, changed a few dummy indices, and used the fact

B _ e puf Jur gur |, PwT wr P dur
3 ouP ow 0wk om | oy juiamk jw © Yev 3igip auk
a7y ve Sub FuY Hu® P2u®  duY a2 uY
and —_ = —F % T 3 + fay ek 251 nod Bay 358 a3 et
ok ouP Jak oW oW Y 9k ol aw Y 3wk 0w oW

It follows from equation (10.25), page 214, that
- 1 [ei;k iy @]

Toe = 35w+ 0w — oar
- 1[% ¥ _ 99«&] du gub our Put  ou
-2

2 " ouP  duv | omf awd s T Fov gulaw ank
du® guP a2ue | Juv
Lty 5 3w | 9ov 3l ow | ok
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10.28. Prove Theorem 10.2: Let x =x(%,7) be a patch on a surface of class =2 such that
the coefficients of the Gausa-Weingarten equations are of class ¢!. Then the mixed
derivatives Xuuv, Xuvu, Xoun, Xovu €Xist and satisfy equation (70.6) if and only if the first
and second fundamental coefficients satisfy the compatibility equations (10.7) and
{10.8).

Since it is assumed the coefficients of the Gauss equations x;; = I'Gx, + byN are of class C!l,
we can compute the third order derivatives.

Xy a
E.T;': = X — ([“j]kxa + I‘f;xuk + (b”)kN + b‘-ij

= (P§hxq + T8 [Thxg + 8N} + ()N + b(—bk x,)
((C5) + PE TR — by lxg + [PHbas + (by)u]N

il

Observe that we used the Weingarten equation N; = —bf'x,. Similarly
Xay = ((CR); + ThTE — bud¥xy + [[hby; + (BN
Now the third order derivatives are independent of the order of differentiation if and only if
Xk = Xyp H %, 5 = 1,2, or, if and only if
Xy — Xy = [CHh — C5); + THTEk — TR — bydf + byl ]xg
+ [Pbar + (i — Thbyy — (B}, JN — 0
Since x;,x,, N are independent, the equation is equivalent to
(® (T — () + rhrs, — THES — bd% + bydy = 0,  a i j k=12
(3) Tibak + (bl — Thba; — (bu)y = 0, thk=12
We consider first equation (b). Observe that the equation is obviously satisfied if j = k. Also the
left hand side simply changes sign if j and % are interchanged. Thus (b) is equivalent to the two
equations obtained by taking i=1, j=1, k=2and i=2,7=1, k=2:
(311)y — (B1z)y = Tiabay —~ [1bye, {barda — (Bazh = Toaber — Tybay
If we expand the right hand sides of the above and use &, =L, ba=byy =M, bpy =N, u=ul
and v = u? we obtain the Mainardi-Codazzi equations (10.7):
L,~M, = ThLL + (I, — T )M — F;N
M,— N, = 'L + (P4, —TL)M — T5,N
We now consider equation (a} above which we can write, using equation (16.32), as
(€ BE = (0%) — (Ch) + ThTS — THilf ohi k=12
From equation (1¢.27) and Problem 10.26, the above is equivalent to
Ry = gupR?jk = Qup(l‘?k),- - yap(r?j)k + QapP?kFthJ - gaprfjrgk
From the skew-symmetric properties of R, (see equation (10.38)) and equations (10.84) and (10.85},
it follows that the above equation is equivalent to the single equation,
Riz = 0ar(T52)1 — 9a1(T3)z + FarlPhel1 — FaaloiThz
or expanding and collecting terms,
Ry = gud(Pheds = (P3gda + TheThy + THTy — T3 Ty — T5iT5}
+ ¢21{(CH) — (To)s + TaeThy — T35}
If we use g =F, g, = F, ul=%, u?=v, I"12 =I",l, and, from equation (10.84), Ry =
LM — N2, we obtain
LM — N = E{(Fh), — (Tla)s + FpThy + I3l — [Tz — Phlh)
+ F{(T3)y = (T5)y + Taol'y; — TipFlp)
which is the third of the compatibility equations (16.8).

10.29. Prove Theorem 10.9: Rmix = (Tam); — (Tim)k + Djilmke — Tilinja
From Problem 10.28, equation (c),
R = (%) — (T + Thll — MiTh
From Problem 10.26,
Emijk = gamRz‘k = ym(Pci!k)j - gum(ﬂ.'i h + gumr?krgf - gamrﬁrgk
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Now gam(r?lc)j = (gamrio;c)j - (gum)jrci!lc = (Timd; — {Pajm + ijajrﬁe
where we used equation (10.24) and Problem 10.23, Similarly
gum(rgi)k = (Pijm)k. — (Takm + T M)P?i

AlSo '8 = I8 gamls = T4, Tsim and similarly FomT§ T = T8 Fgem-  Thus substituting in the
above

Rupiic = (Toemdi — Thlajm — TikCmja — (Tijmdx + TiTorm + TG Tpuke + Tilaim = 5 Takm
which gives the required result.

Supplementary Problems

THEORY OF SURFACES

10.30. Obtain the Christoffel symbols I"f, for the cylinder x = y(u) + vg, g = constant, |g{ = 1.
Ane. T} =y -y"/ly xglt 5 = (0 - ¥"V]y X g2 otherwise T} = 0.
10.31. Verify that the functions F =1+ 4u?, F = —duv, G =1+ 49, L =2(4u?+ 4024 1)~ 172, M =0,
N = —2(4u? + 492 + 1)~ 1/2 gatisfy the compatibility conditions, equations (10.7) and (10.5), page 203,
10.32. Using the Weingarten equations, prove that N, X N, = (EG — F2)KN.
10.33., Solve the Gauss-Weingarten equations for the surface whose fundamental coefficients are ¥ =1,
F=0,G=1,L=-1, M=0, N=10. Ana, Cireular cylinder of radius 1.
10.34. Derive Rodrigues’ formula from the Weingarten equations.
10.35, If the parameter curves on a patch are orthogonal, prove that
_ 1 3G 1 6‘\/_
\/’_ Bu ﬁ EPR B‘U \[_ Tav
10.36. Prove that f(P) = x-x is a continuous function of a point F 611 a surface.
10.37. Prove that the principal curvatures « (P} and k4(F) are continuous functions of & point P on an
oriented surface,
10.38. Prove Theorem 10.6: The only connected and closed surfaces of class = 2 of which all points are
planar points are planes,
10.39. Prove that the spheres are the only connected compact surfaces with positive Gaussian curvature
and constant mean curvature.
TENSORS
1040, If A; and B, are the cemponents of two covariant vectors, show that the outer product C; = A8,
are the components of a covariant tensor of rank 2.
o] ¢ e
1041, Show that det| a? a2 o2} = ei*afalal where ¢i* is defined in Example 10.6, page 210.
@ o o

1042, Show that 877A. = A;— Ap.
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10.43.

10.44,

10.45.

10.46.

10.47.

10.48.

10.49,

10.50.

10.51,

1052. Prove that Rix

THEORY OF SURFACES - TENSOR ANALYSIS - [CHAP. 10

If A4 are the components of an abgolute contravariant tensor and A, A% = 8{ , show that A% are
the components of an absoclute covariant tensor. The two tensors are said to be reciprocal,

If AY and A, are the components of reciprocal syminetric tensors, and if x; are the components
of a covariant veetor, show that A,a'si = A¥xm;, where x; = Alez,.

Show that the quantities e, = e, where the e¥* are defined in Example 10.6(f), page 211, are
the components of a covariant tensor of rank 3 and weight —1.

Let €, =0, ¢p = V9, ¢y = =V, 024 =0, where g = gy 092 —(9,5)2. Show that the ¢y, i,/ =1,2,
are the components of a skew-symmetric covariant tensor such that %, = 0, 13 = V5, e = —V7,
Gzz = 0.

Let i = ¢,39'08 where ¢, is defined in the preceding problem. Show that ! =0, (12 = 1a,
2l =—=1/vg, £2=0.

Show that & bg;— b5 by =0, 1,7 =1,2.

¥

= du Jub B2y | gk
koo— L
Provethat Ty = |:I‘aﬂ ot 3w aa*a‘i]

e’
u
Prove that g—f{-g- = —goTo; — gaiThy.
Show that
3 LN — M2
Rl, = Rin = —Rly = —Raz = Fra—F
{1 _ L LN—M?
e S T
LN — M2

Rin = —Rin = Ega=Fe

and otherwise R?jk =q.

E) v 4 M
p O op
T —F_au" + Ty Ty — Pylgg.

1 1
1053, Provethat »-pn= = Ty + Ty 3@ = Fia + To-



